

Dr. Ramanan Krishnamoorti Chief Energy Officer UH Energy

October 16th Low Carbon Electricity Grid

October 23rd Hydrogen

October 30th Circular Plastics Economy

To learn more about the "Houston: Low-Carbon Energy Capital – Four Ways Forward" series visit:

https://uh.edu/uh-energy/energy-symposium-series/lowcarbon-energy-capital/

THANK YOU to our research partners

Brett Perlman and Laura Goldberg of CHF
Greg Bean of GEMI / Bauer College of Business
Jeannie Kever of UH

THANK YOU to our promotional partner

TIEEP

TEXAS INDUSTRIAL ENERGY EFFICIENCY PROGRAM

Charles McConnell
Energy Center Officer (CCME)
University of Houston

Student Presenters

- Paty Hernandez, BBA in Finance, Minor in Accounting,
- Brad Peurifoy, Professional MBA
- Makpal Sariyeva, BS in Petroleum Engineering

Houston as a CCUS hub

Why CCUS?

- CCUS essential to meet global climate targets
- Immediate emissions reductions from decarbonization
- Emission targets can't be achieved with clean energy alone
- Affordable, reliable, sustainable energy needed to reduce energy poverty

What Impacts?

- Long term sustainability of industries
- Set the stage for Houston as a decarbonization center of USA
- Globally recognized for energy skillset, knowledge, and technology
- Low carbon products advantage in global market

Why Houston?

- "Energy capital to sustainable energy capital"
- Infrastructure and scale suitable for "cluster" economics
- Vast, proximal geologic storage resources
- Energy companies strategies are shifting to "net-zero"

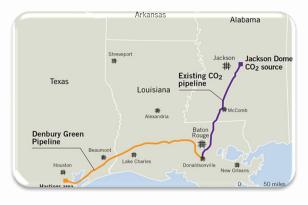
Objectives and Findings

Objectives

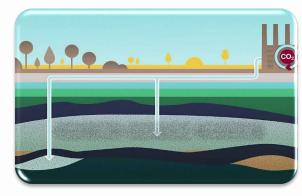
- Develop a staged 3x10yr CCUS deployment analysis roadmap
- Utilize the NPC national analysis construct and regionalize for local impacts
- Analyze the emissions AND economic investment impact in the Houston Area
- Assess and position CCUS "optionality" to alternative geologic formations for both storage and EOR – as well as -for the extended energy producing network in the greater US Gulf Coast in all directions from Houston

FINDINGS

- Investment and risk hurdles will require "strategic investment"
- A mix of EOR and pure storage provides an investment portfolio approach for CCUS
- Current base of target geologies and infrastructure options are far greater than the stationary emissions in the 9 county Houston region long term expansion impact
- Federal, state and local government policies must support/accelerate this transition



Key Challenges to Address in Project


Carbon Capture

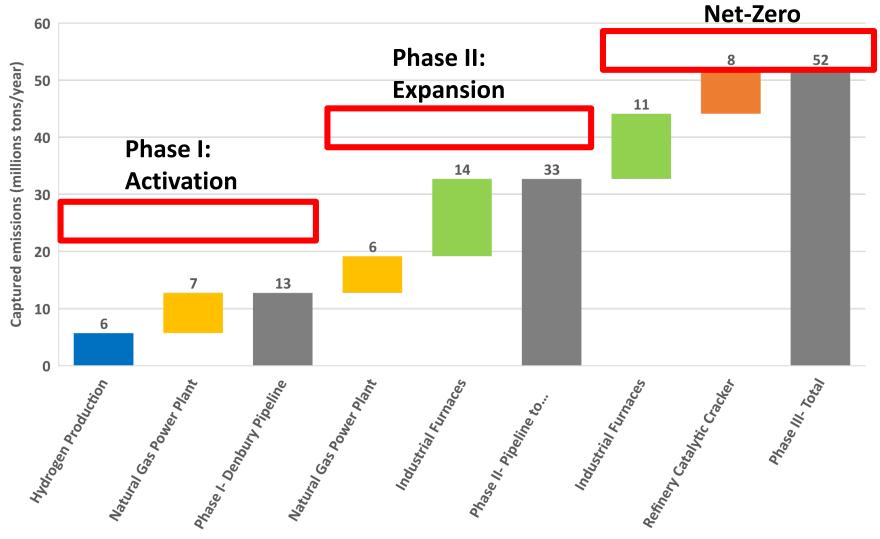
Transportation

Storage

- Technology maturity
- Capture Cost of CO₂ (3/4 of total CCUS cost)
- Electricity cost for compression
- Separation cost to purify CO₂

- Permits & Regulations
- Public acceptance
- Eminent Domain
- Cost of pipeline design and operating expense
- Infrastructure improvements

- Primacy
- Class 6 wells
- Low cost of oil
- Cost of surveillance (Liability for releases)
- Induced seismicity



Taking Houston to Net-Zero

Phase III:

Phase I: Activation (2030)

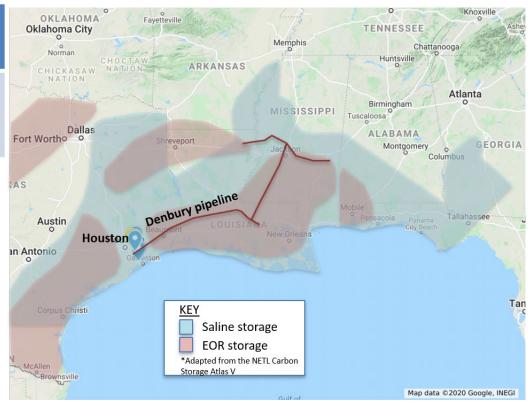
Capture

Facility type	Captured emissions (MM tons/yr)	Total investment (bil US\$)
Hydrogen	5.7	\$1.1
Natural gas power plants	7	\$2.5

Transport

Pipeline	Available capacity (MM tons/yr)	Total investment (bil US\$/yr)
Denbury	12.9	\$0.12

- Hydrogen emissions prioritized due to cheaper capture cost.
- Natural gas power plants second due to increasing pressure from investors.
- Denbury currently utilized at 1/3 capacity.


UNIVERSITY of HOUSTON

Phase I: Activation (2030)

Storage

Location	Available storage (bil tons)	Total investment (bil US\$/yr)				
Gulf Coast EOR	1.4					
Gulf Coast saline	1,500	\$0.12				

- Significant EOR storage is available along Gulf Coast in the form of disparate oil fields.
- Denbury has identified multiple
 EOR fields along the pipeline's path.
- Saline storage is sufficient to handle Denbury capacity for 75 years.

Gutierrez Energy Management Institute

Phase I: Economic Model

Discounted cash flow model

- Phase I only
- Combined hydrogen/natural gas
- Denbury pipeline
- Toggle ratio of saline storage to EOR
- Outputs NPV and IRR

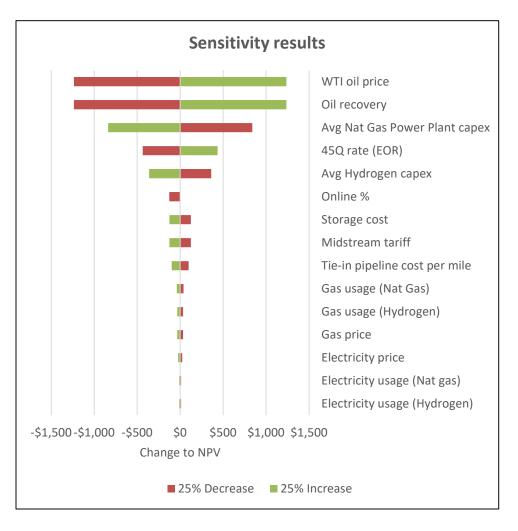
Assumptions

- NPC capture facility reference costs
- Gaffney Cline estimates for regional gas and electricity costs
- Discount rate: 12%
- Inflated oil, gas, and electricity annually

Scenarios

- **100% EOR scenario** and varied key inputs by +/-25%
- 100% saline scenario and varied key inputs by +/-25%
- Oil price/45Q rate required for positive NPV

	Inputs		units	Assum	ntions	Hydrogen C units	Cape		units	Opex		units		Input	to.	units	Cap	NOV .
	Captured emissions	5,414,933		bbls produced per metric ton of CO2 injected		barrels	Multiplier	13.54		Electricity usage		MWh/ton		Captured emissions	7,040,654		Multiplier	pex
			tons/year	Project life		vears	Capture capex (total)	1.063.289.854		Electricity price		S/MVVhr		Capacity per capture	1,504,2901	Jilsiyeai	Capture capex (total	
	Capacity per capture unit installed	100%		45Q rate (EOR)		years \$/metric ton	1st year capex	1,063,289,854		Gas usage		MMBtu/ton			1,504,2901			2,408,920
	Online percentage	0%		45Q rate (EOR) 45Q rate (saline)			2nd year capex	20%		Gas usage Gas price		\$/MMBtu/ton		Online percentage	0%		1st year capex 2nd year capex	
	% saline storage	070	170	WTI oil price		\$/bbl	3rd year capex	30%		Opex, non-energy, annua		% of capex		% saline storage	070		3rd year capex	
				Inflation	3%		Avg Hydrogen capex	78.545.000		Midstream tariff	270	\$/ton					Avg Nat Gas Power	
				Tax rate	21%		Tie-in pipeline cost per n			Storage cost		\$/ton					Avg Nat Gas Fower	021,00
				Discount rate	12%	70	Length of tie-in line		miles	Storage cost	10	arton						
				Depreciation		vears	Total cost of tie-in line											
				Depreciation	,	ycurs	Total cost of the in line	\$ 502,000,000.00										
	Oil Price (infated annually)	\$40.00	\$41.0	0 \$42.03	\$43.08	\$44.15	\$45.26	\$46.39		\$48.74	\$49.95	\$51.20	\$52.48	\$53.80	\$55.14	\$56.52	\$57.93	3 5
	Gas price (inflated annually)	\$2.00	\$2.0	5 \$2.10	\$2.15	\$2.21	\$2.26	\$2.32		\$2.44	\$2.50	\$2.56	\$2.62	\$2.69	\$2.76	\$2.83	\$2.90	0
	Electricity price (inflated annually)	\$10.00	\$10.2	5 \$10.51	\$10.77	\$11.04	\$11.31	\$11.60			\$12.49	\$12.80	\$13.12	\$13.45	\$13.79	\$14.13		8 .
F	Years	1		2 3	4	4	6	7		9	10	11	12	13	14	15	16	à
	45Q Revenue (saline storage)	\$0.00	\$0.0	0 \$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00			\$0.00	\$0.00	\$0.00	\$0.00		0
	45Q Revenue (EOR storage)	\$0.00			\$435,945,548,85		\$435 945 548 85			\$435,945,548,85			\$435 945 548 85		\$435 945 548 85			
	Petroleum revenue	\$0.00				\$1,099,891,008.99	\$1 127 388 284 21				\$1 244 425 720 85		\$1 307 424 772 97				\$1,443,152,317,93	
	Total Revenue	\$0.00	\$0.0	0 \$0.00		\$1,535,836,557,84					\$1.680.371.269.70		\$1,743,370,321,82				\$1.879.097.866.78	
	Hydrogen capture capex		\$531,644,926.9		\$0.00								\$0.00		\$0.00			
	Nat gas power plant capex		\$1,234,462,786.8		\$0.00	\$0.00							\$0.00		\$0.00	\$0.00		
	Tie-in line capex	\$100,666,666.67	\$100,666,666.6	7 \$100,666,666.67	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	0
	Electricity (Hydrogen)	\$0.00			\$10,496,323.77	\$10,758,731.86	\$11,027,700.16	\$11,303,392.66		\$11,875,626.91	\$12,172,517.59	\$12,476,830.53	\$12,788,751.29	\$13,108,470.07	\$13,436,181.82	\$13,772,086.37		3 \$14,469,
	Gas (Hydrogen)	\$0.00			\$29,739,584.00	\$30,483,073.60	\$31,245,150.44			\$33,647,609.59	\$34,488,799.83	\$35,351,019.83	\$36,234,795.32	\$37,140,665.20	\$38,069,181.83	\$39,020,911.38		\$40,996
	Opex, non-energy (Hydrogen)	\$0.00			\$21,265,797.08	\$21,265,797.08	\$21,265,797.08	\$21,265,797.08			\$21,265,797.08	\$21,265,797.08	\$21,265,797.08	\$21,265,797.08	\$21,265,797.08	\$21,265,797.08		
Opex	Electricity (Natural gas)	\$0.00			\$11,265,045.98	\$11,265,045.98	\$11,265,045.98	\$11,265,045.98		\$11,265,045.98	\$11,265,045.98	\$11,265,045.98	\$11,265,045.98	\$11,265,045.98	\$11,265,045.98	\$11,265,045.98		
open [Gas (Natural gas)	\$0.00			\$39,427,660.94	\$39,427,660.94		\$39,427,660.94				\$39,427,660.94	\$39,427,660.94	\$39,427,660.94	\$39,427,660.94			
	Opex, non-energy (Natural gas)	\$0.00			\$49,378,511.47	\$49,378,511.47	\$49,378,511.47	\$49,378,511.47			\$49,378,511.47	\$49,378,511.47	\$49,378,511.47	\$49,378,511.47	\$49,378,511.47	\$49,378,511.47		
	Transport tariff	\$0.00			\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10		\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10				
	Storage cost	\$0.00	\$0.0	0 \$0.00	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555,871.10	\$124,555
	EBITDA (Rev-capex-opex)	-\$807,109,752.16	-\$1,866,774,380.4	0 -\$1,160,331,294.91	\$1,098,325,282.41	\$1,124,145,994.69	\$1,150,612,224.78	\$1,177,740,110.62	\$1,205,546,193.61	\$1,234,047,428.67	\$1,263,261,194.61	\$1,293,205,304.69	\$1,323,898,017.53	\$1,355,358,048.19	\$1,387,604,579.62	\$1,420,657,274.33	\$1,454,536,286.40	\$1,489,262
	Depreciation	\$547,745,061.07	\$547,745,061.0	7 \$547,745,061.07	\$547,745,061.07	\$547,745,061.07	\$547,745,061.07	\$547,745,061.07	•									
	EBIT (Rev-OPEX-Depreciation)	-\$1.354.854.813.23	-\$2.414.519.441.4	7 -\$1.708.076.355.98	\$550.580.221.35	\$576.400.933.63	\$602.867.163.71	\$629.995.049.55	\$1,205,546,193,61	\$1,234,047,428.67	\$1,263,261,194,61	\$1,293,205,304,69	\$1.323.898.017.53	\$1.355.358.048.19	\$1,387,604,579,62	\$1.420.657.274.33	\$1,454,536,286,40	\$1,489,262
	NOPLAT (EBIT*(1-Tax Rate))	-\$1,070,335,302,45		6 -\$1.349.380.321.22	\$434,958,374,86	\$455,356,737,57	\$476,265,059,33		\$952,381,492,95	\$974.897.468.65			\$1.045.879.433.85				\$1,149,083,666,26	
	FCF	-\$1,329,699,993,54			\$982,703,435,93	\$1,003,101,798.63	\$1,024,010,120,40		\$952,381,492,95	\$974,897,468.65			\$1.045.879.433.85				\$1,149,083,666,26	
	PV of FCF	-\$1,187,232,137.09			\$624,525,799,24		\$518,795,395,40			\$351,557,800,52		\$293,694,842.01	\$268.451.200.89		\$224.305.797.36			
	Project NPV	\$113,543,909.91			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		. ,,			,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,	,,				
	IRR	12%																



Phase I: Economic Model Results

Combined hydrogen and natural gas power plant model - 100% EOR

Compility idea 4								
Sensitivity 1								
Base Case Assumptions (100% EOR)								
Online %	100							
bbls produced per metric ton of CO2		barrels						
45Q rate (EOR)	\$35	\$/metric ton						
45Q rate (saline)	\$50	\$/metric ton						
WTI oil price	\$40	\$/bbl						
Avg Hydrogen capex	\$78,545,000.00	\$/unit						
Avg Nat Gas Power Plant capex	\$527,505,000.00	\$/unit						
Tie-in pipeline cost per mile	\$2,000,000.00	\$/mile						
Length of tie-in line	151	miles						
Electricity usage (Hydrogen)	0.18	MWh/ton						
Electricity usage (Nat gas)	0.16	MWh/ton						
Electricity price	\$10	\$/MWhr						
Gas usage (Hydrogen)	\$2.55	MMBtu/ton						
Gas usage (Nat Gas)	\$2.80	MMBtu/ton						
Gas price	\$2	\$/MMBtu						
Opex, non-energy, annual	0.02	% of capex						
Midstream tariff	\$10.00	\$/ton						
Storage cost	\$10.00	\$/ton						
NPV	\$ 113,543,909.91							
IRR	12%							

- Project can be NPV positive with 12%
 IRR today.....however
- US40/bbl price required for 20 years for project with high risk potential
- Most influential parameters include: oil price, recovery factor, nat gas capex. and 450 rate

Key Take-aways

Phase I (present to 2030):

- Focus on low cost strategic CO₂ Houston emissions: 5.7million tons/yr from Hydrogen SMR
 7 million tons/yr from Natural Gas Power
- Transport on existing/available Denbury pipeline: 13 million ton/yr available capacity
- Gulf coast accessible geologic storage: 1.4 Billion tons for EOR and 1.5 Trillion tons of saline
- EOR most economically attractive with current tax credits BUT with Highest Risk
- Parameters needed for overall positive system NPV: (with 12% all equity hurdle)
 - 100% EOR storage requires \$40/bbl oil price PLUS 45Q credit of \$35/ton
 - 100% saline storage only requires 45Q Tax credit significantly above current \$50/ton

Phase II (2040):

- Expand capture to include: 6.4 million tons/yr from Natural Gas Power Plant
 13.5 million tons/yr from Industrial Processes Refining and Pet Chem
- Build pipelines to the East/Central Texas: 20-30 million tons/yr available capacity at \$500 million cost (250 miles X US\$2 million/mile). On and offshore geologic target zones
- East/Central Texas available storage: 3.6 billion tons for EOR and 500 billion tons of saline

Phase III (2050):

- Expand capture to include: 11.4 million tons/yr from Industrial Furnaces
 7.8 million tons/yr from Refinery Catalytic Cracker
- Build pipeline to the Permian: 20 million tons/yr available capacity at US\$1 billion cost (500 miles X US\$2 million/mile)
- Permian available geologic storage: 4.8 billion tons of EOR and 1 trillion tons of saline

Acknowledgements

C. T. BAUER COLLEGE of BUSINESS
Gutierrez Energy Management Institute

Special thanks: Jane Stricker, Mike Godec, Steve Melzer, Scott Nyquist, and Nigel Jenvey!

Thank you!

Scott Nyquist

Moderator
Senior Advisor

McKinsey & Company

Submit your Q&A questions now for Scott Nyquist at:

uh.edu/energy/ask

Jane Stricker
Relationship Manager, US Cities *BP*

Juho Lipponen
Coordinator
Clean Energy Ministerial CCUS Initiative

Nigel Jenvey Global Head of Carbon Management, Gaffney, Cline & Associates US Cities

Charles McConnell
Energy Center Officer (CCME)
University of Houston

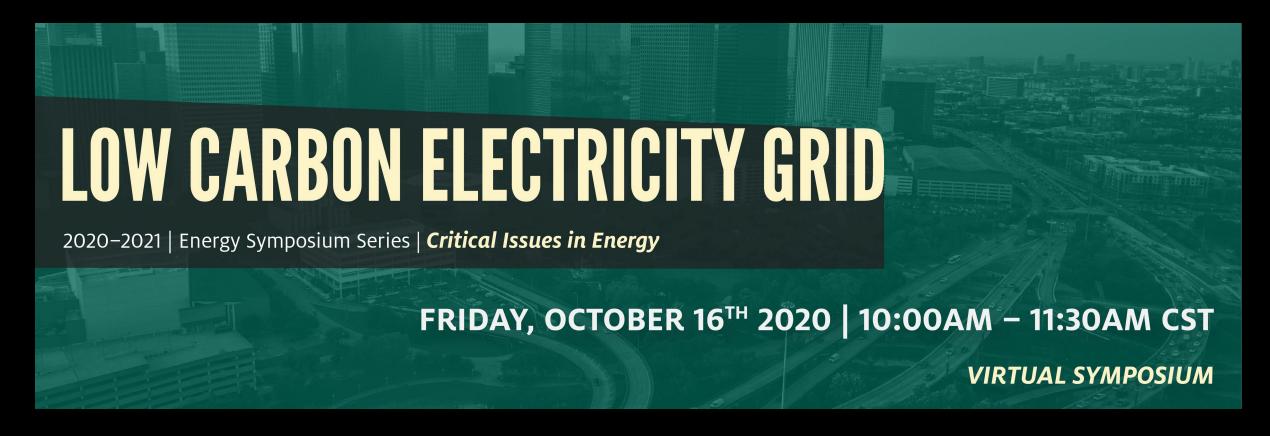
Submit your Q&A questions now for the panelists at:

uh.edu/energy/ask

THANK YOU

to our research partners

UNIVERSITY of **HOUSTON**


C. T. BAUER COLLEGE of BUSINESS Gutierrez Energy Management Institute

THANK YOU to our promotional partner

TIEEP

TEXAS INDUSTRIAL ENERGY EFFICIENCY PROGRAM

Join us next Friday, October 16th for:

