

Sugar Land Marriott Town Square, Texas

There is No C in Hydrogen

Low Carbon Footprint Hydrogen Production

Matt Reisdorf Fluor

Colors of Hydrogen

Capital Cost of Low Carbon Hydrogen: Postcombustion Blue H₂ as an Example

Pipeline/Wells

Basis: Precombustion amine capture from Hydrogen. Total capital cost categorized by equipment cost to yield approximate cost per category.

Capital Cost of Low Carbon Hydrogen: Ultimate Destination

- Enhanced Oil Recovery can justify (varies with geology, geography, and oil price)
- Shared pipeline systems bring economies of scale
- Carbon Utilization initiatives seek opportunities to turn cost to value
- Geologic research has identified widespread storage opportunities

Capital Cost of Low Carbon Hydrogen: Compression

CO2 Capture

Support

Compression

Pipeline/Wells

- Capture technology can somewhat affect suction pressure...but high discharge pressures set by geology and hydraulics.
- Some carbon utilization targets do not require compression

Capital Cost of Low Carbon Hydrogen: Support

Compression

Pipeline/Wells

- Carbon capture systems can be large users of steam, power, and cooling
- Fortunately, hydrogen plants often export steam and have other utilities available, minimizing new utility capital requirements

Capital Cost of Low Carbon Hydrogen: Carbon Capture

- Carbon capture costs vary with technology, but are only one piece of the total
- Reducing CO2 Capture costs by 50% affects the total cost by only 20%

Incentives for Low Carbon Hydrogen

- Enhanced Oil Recovery: Varies, but perhaps \$35/MT
- US 45Q Incentives: \$35-50/MT
- Low Carbon Fuel Standard: Varies by destination, but can be \$200/MT for liquid fuel producers
- Current Cap and Trade: Varies by location, but ~\$20/MT
- Future regulation may significantly increase

Modern SMR Hydrogen Plant

Precombustion SMR Carbon Capture (57% Direct Emissions Captured)

Postcombustion SMR Carbon Capture (90% Direct Emissions Captured)

Major Operating Costs

	Precombustion Amine	Postcombustion Amine	Physical Solvent
Steam, MT/MT CO2	1.14	1.15	0
Power, kWh/MT CO2	138	173	198
Cost, \$/MT CO2 (\$5/1000 lb steam, \$0.05/kWh)	\$19.50	\$21.30	\$9.90

Amine utilities from actual operating facilities, public domain data, for relatively CO2 rich sources. Solvent utilities estimated. Steam and power costs will vary with facility

Physical Solvent for Carbon Capture

	Physical Solvent	Amines
Composition	Non-Hazardous	May be Hazardous
Metallurgy	Generally Carbon Steel	Stainless Steel
Solvent Degradation	Not a concern	Significant concern
Regeneration	Simple flashing	Steam-based regenerator
Solvent Maintenance/ Reclamation System	Not Required	Required
CO2 Captured	Highly concentrated	Highly concentrated
CO2 Capture Percentage	>90%	>90%

Physical solvent based on Fluor Solvent

Other Routes to Blue Hydrogen

- Autothermal Reformer or POX with Carbon Capture
 - No reformer furnace loads to consider
- Adsorption
 - Vacuum Swing Adsorption by Air Products

THE SHELL BLUE HYDROGEN PROCESS

Water Electrolysis Basic Components

Image Credits: IRENA, Green Hydrogen Cost Reduction

Image Credit: ITM Power

Types of Water Electrolyzers

Image Credit: IRENA, Green Hydrogen Cost Reduction

- A recent article ("How Green is Blue Hydrogen", Howarth and Jacobson) has created recent news
- The premise that fugitive emissions is important to consider is valid, but the conclusion in the headlines needs to be considered critically

HOUSTON CHRONICLE

'Blue hydrogen,' touted as clean natural gas product, may pollute more than coal, new research finds

- The following analysis is based on the IEAGHG 2017-02 report, which considers:
 - A full material balance of a modern SMR hydrogen plant, with the value of produced steam converted to electricity
 - A full material balance of a conservative postcombustion carbon capture facility, with steam and power generated from the SMR excess steam
- This analysis considers the full energy impact of the hydrogen plant and onsite carbon capture

	Howarth and Jacobson	Industry Experience
Energy for Carbon Capture	Separately produced without carbon capture, adds to emissions	Steam is a byproduct of SMR process and can be used to generate power
Energy Inputs for SMR	High level figure from literature	Rigorous material balance is 18% lower
Carbon Capture Rate	65-85%. Low end from cycling power plant	>=90% in steady state operation. Cyclic operation will be lower, but many hydrogen plants are steady state

Grey Hydrogen

	Value used in Howarth and Jacobson	mol Methane per mol H2 Produced	First, convert the data from the
SMR Process	0.875 mol Methane / MJ H2	0.250	compare materi balance data
Fuel	0.1814 MJ Energy / mol H2	0.206	
Electricity Required	Included above		
Total		0.456	

Grey Hydrogen Compare with rigorous material balance

Mol Methane / Mole H2 Produced

	Howarth and Jacobson	IEAGHG 2017-02 Base Case (1)	Higher as some methane is unreacted and PSA sends
SMR Process	0.250	0.336	some H2 to furnace
Fuel	0.207	0.059	Exported steam converted to power. Power converted to methane using US average
Electricity Required	Included above	-0.02	Net methane requirements
Total	0.456	0.376	18% lower

Note 1: Converted from a natural gas basis to a pure methane basis by Fluor to place on the same basis as Howarth and Jacobson

Blue Hydrogen (Postcombustion) Material Balance

Mol Methane / Mole H2 Produced

	Howarth and Jacobson Grey H2	IEAGHG 2017-02 Base Case (Grey H2)	IEAGHG 2017-02 Case 3 (Blue H2)
SMR Process	0.250	0.336	0.336
Fuel	0.206	0.059	0.10
Electricity Required	Included above	-0.02	0
Total	0.456	0.376	0.437

CO2 Emissions Assume 3.5% Fugitive Emissions, 20 Year Life

	Howarth and Jacobson		IEAGHG 2017-02	
	Grey	Blue	Grey	Blue
Direct Emissions, mol CO2/mol H2	0.46	0.21	0.40	0.05
Fugitive Emissions, mol CO2 Equiv/ mol H2	0.50	0.62	0.41	0.48
Upstream Emissions	0.03	0.04	0.03	0.03
Total, mol CO2/mol H2	0.99	0.87	0.84	0.56
Reduction		12%		33%

CO2 Emissions Assume 1.75% Fugitive Emissions, 20 Year Life

	Howarth and Jacobson		IEAGHG 2017-02	
	Grey	Blue	Grey	Blue
Direct Emissions, mol CO2/mol H2	0.46	0.21	0.40	0.05
Fugitive Emissions, mol CO2 Equiv/ mol H2	0.25	0.31	0.21	0.24
Upstream Emissions	0.03	0.04	0.03	0.03
Total, mol CO2/mol H2	0.74	0.57	0.63	0.32
Reduction		24%		50%

- Fugitive emissions from natural gas add a "base load" of GHG emissions that carbon capture cannot adjust
- Assumptions of time horizon and fugitive methane emissions strongly affect GHG intensity of natural gas
- It is important to consider the full energy balance of hydrogen production and CO2 capture in the overall system
- For an existing facility, operating with carbon capture should always improve GHG emissions vs operating without

Low Carbon Hydrogen Use Cases

Retrofit of Existing Facilities

- Ability of a solution to integrate with existing facility is key
- Destination of CO2 is important; carbon utilization can provide options if local storage not available

New Facilities with H2 as a Feedstock

- May be able to adjust facility location and process for CO2 capture and storage
- Energy source for hydrogen production affects product carbon intensity

New Facilities with H2 as an Energy Source

- Energy source for hydrogen production is key
- Steady state vs intermittent energy production is a key variable for the process and its integration

