

Streamlining The Search for Energy Savings in Utilities

Texas Industrial Energy Efficiency Program May 4, 2023

Clayton Harris, PE Engineering Manager

HYDRUS WORKS, LLC | 720 RUSK ST. HOUSTON, TEXAS 77002

713.425.3951 | Hydrusworks.com

Agenda

- Background and Context
- A Better Approach to Utilities
- Examples
- Closing and Discussion

What we do

We help sites to grapple with challenging industrial utilities.

Utility Focused Services

We help energy and industrial companies

Tighten up operations

Improve intelligently

Plan for the future

Our utility services help your site

Reduce your footprint

Maximize what you've got

Optimize capital expenditures

CLAYTON.HARRIS@HYDRUSWORKS.COM

Utility Systems Are Important

Utilities serve the needs of multiple processes

- They are the only systems than can impact an **entire operation**
- Demands on utilities can vary broadly but rarely decrease over time

Utility Systems Are Tough

They are giant – Most span the site
They are old – Have been in service since the beginning

 They are complicated – Often a Frankensteined mess from multiple expansions

 Knowledge is fragmented – Breadth is too large, personnel is limited

Utility Systems Aren't Sexy

- Historically, utilities are low on the totem pole
- Improvements don't always have a clear or short-term ROI
- Utility projects are often driven by a process improvement's need or a recurring pain point

Utility Systems Are Full of Opportunities

- Reduce energy consumption
- Reduce water consumption
- Optimize operations
- Improve reliability and fault tolerance
- Process improvements

Utilities do best with a **Continuous Improvement (CI)** approach

Step 1 – Standardize the work

Step 2 – Make incremental improvements

Step 3 – Retain and fortify the knowledge earned

Utilities do best with a **Continuous Improvement (CI)** approach

Step 1 – Standardize the work

Step 2 – Make incremental improvements

Step 3 – Retain and fortify the knowledge earned

Now go back to Step 2

Where Do You Start?

At the beginning

What is an Industrial Utility System?

- The infrastructure and equipment used to provide essential resources to support processes (Water, steam, air, nitrogen, etc.)
- Consists of suppliers and consumers
 - Suppliers serve multiple consumers
 - Consumers vary in type, size, and location

You Need a Tool

- There can be hundreds of components influencing a utility system
- Individual components are often well understood
 - They were designed and sized to meet a specific need
 - Under the assumption that the utility system will supply
- How the system and components operate as a whole – not always well understood
- You're going to need an analysis tool that can help you understand how the system operates as a whole

The Right Tool

- A good analysis tool is ready to answer any question you can throw at it quickly and accurately
 - Operational demands, conditions, and capacities
 - Degraded conditions, issues and severity
- Should provide trustworthy, hard numbers
 - Shortfalls GAP analyses, where does your system fall short?
 - What conditions put your system (and the processes they serve) at risk?
 - What future demands need to be met How do you meet them?
- A model is the right tool

Not Just Any Model

- All components in a utility system are connected to a common pipe network
 - They are all hydraulically connected
 - Any one component can influence the entire system
- A hydraulic model is the essential tool to understand a utility system
- If developed correctly from the outset, the hydraulic model can form the foundation of a continuous improvement approach

How we do it

With a modern approach and the right tools

How we do it

Measure

We measure, collect, and generate relevant, real-world data. Better data yields better solutions.

Model

The devil is in the details. We execute complete, arms-around approaches to uncover opportunities.

Maintain

Things change overtime. We make sure you stay in front of problems and are ready for the next expansion.

Modeling Phases

1. Phase I – The Bear Hug Phase

- Get your arms all the way around the system
- Understand its demands, its capabilities and limitations
- Once complete, you're ready to start answering the real questions (analysis, evaluations, what-ifs, etc.)

2. Phase II – The Evergreen Phase

- Keep your arms around each system Stay in front of problems and future needs
- Prioritize, manage and develop plans to effectively meet demands and tackle issues quickly and effectively

Model Development

- Model must be developed to be comprehensive and multipurpose. Designed to answer any question.
- Aggregates all the key data
 - Design data PFDs, PIDs, datasheets, etc.
 - Physical data Layouts, locations, controlling factors, valve states, etc.
 - Historical data Usage, trends, and demand cycles
- If your model is done right, its *better* than PFDS, PIDs, plot plans, datasheets, and PI data because it combines ALL that information into a single representation

Pro Tips – Model Development

- Be consistent Formalize data and model standards
 - Models should look and feel similar (naming, colors, symbols, etc.)
- Traceability
 - References and data sources should be traceable
 - Document operating conditions, boundaries, and limitations
 - Maintain a chain of custody
- Strive to make the model the best starting point for a wide variety of tasks
- Commit the time
 - Modeling utility systems is a time and labor-intensive process
 - A larger system can take upwards of 3-4 months to complete

Evergreening

- Resist the urge to put the model on the shelf when your initial analysis is complete
 - The accuracy (and value) of the model degrades with time don't let it expire
 - There will always be more questions to answer
- Commit to evergreen models and reference data
 - Integrate evergreening into your engineering phases, processes and cycles
 - Don't let the small details get lost in the noise

Pro Tips – Evergreening

- Be consistent Formalize evergreening requirements
- Formalize routine refreshment and recalibration as part of the engineering and TAR cycles
 - Consistently remeasure and recalibrate to maintain accuracy
 - Require interim changes be included, this data will prove useful in retrospect
- Build institutional knowledge Ensure knowledge sticks as people move up and move on
 - Have a central source that clearly documents a system's lineage
 - Implement a system to manage/track your system's ownership, changes, issues, project needs, etc.
 - Make it a company resource others need access to this knowledge

Energy Savings Examples

Energy savings uncovered thorough hydraulic modeling

Boiler Feedwater Pumps

- (4) 600 HP pumps operating in parallel (continuous)
- Developed a hydraulic model
- Conducted field survey to validate the model
 - Pressure in 14 locations
 - Flow in 8 locations
- Control point adjustment allowed shutdown of (1) 600HP BFW Pump
 - 10,738 kWh/day savings

Raw Water Pump Optimization

- (5) Pumps feeding two interconnected clarified water systems
- Developed a hydraulic model and conducted field data survey to validate the model
- Determined most efficient pump combinations
 - 1,600 kWh/day savings
 - Reduced wear on control valves at clarifier inlets

The Cost of a Spillback

- Utilizes a spillback valve set to maintain 150 psi system pressure
- Energy wasted through spillback
 - 3,608 kWh/day
- VFDs can turn pump down in lieu of spillback

Food for Thought – Where to Look for Energy Savings in Utilities

- Parallel or multi-pump systems
 - Optimize pump combinations especially if they aren't clones. Not all pumps play well with others
 - Consider the impacts of operating less pumps
- Control
 - Spillbacks are wasted energy
 - If you're burning pressure to control, you're wasting energy. Consider a VFD
- Piping Overloaded pipes take more energy to push through
- Leaks Steam, air, and gasses (and insulation)

Step 1 – Standardize the work

- Require comprehensive hydraulic models be developed for major utility systems
- Require modeling of impacts of *any* changes
- Evergreen models and reference data

- **Step 2** Make incremental improvements
- Leverage the model find opportunies and inefficiencies
- Accept small changes and improvements
- Consider small improvements every time a project touches utilities

Step 3 – Retain and fortify the knowledge earned

- Build history and institutional knowledge – don't fight the same battle twice
- Formalize revision control, build a chain of custody, and fortify reference data
- Revise your standards (if needed)

UMaaS – Utility Modeling as a Service

- We build and maintain a library of utility models and data
- Maximizes your site's utility engineers with evergreened, trustworthy tools at their fingertips
- Free the to focus on the bigger picture to support the projects, operations, and maintenance

Step 1 – Standardize the work
Step 2 – Make incremental improvements

Step 3 – Retain and fortify the knowledge earned

Thank you!

Clayton Harris

Engineering Manager Clayton.Harris@HydrusWorks.com 512-626-8528

HydrusWorks.com

Corey Hensley

Business Development Director Corey.Hensley@HydrusWorks.com 713-471-5748

HYDRUS WORKS, LLC | 720 RUSK ST. HOUSTON, TEXAS 77002

713.425.3951 | Hydrusworks.com