

Optimum Design and Operation of Complex Steam Systems at Oil & Gas Industries Through Combined Heat and Power Optimization Model

> The 12th AIChE Southwest Process Technology Virtual Conference; October 1-2, 2020

Abdulrahman Hazazi & Mana M. Al-Owaidh

Outline:

- Overview of CHP Models
- Optimum Operation of CHP Systems
- Optimum Design of CHP Systems
- Conclusion

Overview: Combined Heat & Power Optimization Model

Introduction: Combined Heat & Power Optimization Model

- Boilers
- Cogeneration Units
- Process Steam Generators
- Steam Turbines
- Motors Switchable to STs
- Steam users
- Power users
- Steam System Network
- Letdowns/De-super-heater
- Fin-Fan Condensers
- Deaerator
- Condensate system

Introduction: Combined Heat & Power Optimization Model

Fuel, Power, .. (Energy)

Overview: Combined Heat & Power Optimization Model

saudi aramca

Optimum Operation of CHP Systems

Optimum Operation of Steam and Power Systems

((•))

The real time (online) CHP model is taking real time data from the PI system to advise improvement in energy system operation

- Simulating actual CHP operation of the facilities
- Providing real-time advisory recommendations to reduce operating cost and improve system efficiency through:
 - Maximize Cogeneration units.
 - Boiler Load Management
 - Steam Turbine & Motor Switching
 - Minimize Excess Steam
- A tool that helps the user to proactively monitor and optimize operations

Optimum Operation of Steam and Power Systems

Case Study: Optimum Operation of Steam and Power Systems

		Cogen Units	Actual load %	Optimize	ed Load %	
Start time:	Maximiza	Unit 1	96	1	00	
start time.		Unit 2	91	1	00	
7/16/2019	cogeneration antes	Unit 3	96	1	00	
		Unit 4	98	1	00	
11:00:00 AM						
End Time:		Boiler #	Actual stm (klb/h)	Optimize (klb/	ed stm 'h)	
7/16/2019	Boiler Load	Boiler # 1	0	0		
	Management	Boiler # 2	260	18	8	
12.00.00 FM		Boiler # 3	255	18	8	
		Service	Equipment	Туре	Actual	Optimized Statu
		Service	Equipment	Type	Status	ON
		SRU-100	KT-101A	Turbine	ON	ON
		Air Blowers	KT-101B	Turbine	ON	OFF
			KT-101C	Motor	OFF	ON
		SRU-200	KT-201A	Turbine	ON	ON
						•••
		Air Blowers	KT-201B	Turbine	ON	OFF
	Steam Turbine &	Air Blowers	KT-201B KT-201C	Turbine Motor	ON OFF	OFF
	Steam Turbine &	Air Blowers SRU-300	KT-201B KT-201C KT-301A	Turbine Motor Turbine	ON OFF ON	OFF ON
	Steam Turbine & Motor Switching	Air Blowers SRU-300 Air Blowers	KT-201B KT-201C KT-301A KT-301B	Turbine Motor Turbine Turbine	ON OFF ON ON	OFF ON ON
	Steam Turbine & Motor Switching	Air Blowers SRU-300 Air Blowers	KT-201B KT-201C KT-301A KT-301B KT-301C	Turbine Motor Turbine Turbine Motor	ON OFF ON ON OFF	OFF ON ON OFF
	Steam Turbine & Motor Switching	Air Blowers SRU-300 Air Blowers SRU-400	KT-201B KT-201C KT-301A KT-301B KT-301C KT-401A	Turbine Motor Turbine Turbine Motor Turbine	ON OFF ON OFF ON	OFF ON ON OFF ON
	Steam Turbine & Motor Switching	Air Blowers SRU-300 Air Blowers SRU-400 Air Blowers	KT-201B KT-201C KT-301A KT-301B KT-301C KT-401A KT-401B	Turbine Motor Turbine Turbine Motor Turbine Turbine	ON OFF ON OFF ON ON	OFF ON OFF ON ON

•

•

Optimum Operation of Steam and Power Systems

Optimum Design of Steam and Power Systems

Capital Modifications Optimum Design- Grassroot

- 1. Identify the best configuration of steam system network (number of headers)
- 2. Identify the optimum number and sizes of boilers, cogeneration units
- 3. Identify the optimum number and sizes of steam turbines and motors drivers
- 4. Consider key reliability constraints (design /operation)
- 5. Evaluate key alternatives based on efficiency and economics

Case Study: Optimum Design of Combined Heat & Power System

Facility Energy Demand		Value	Unit	
Power Demand		200	MW	Process Operation
Steam Demand		1200	Klb/h	
Steam Reserve Available	>=	One Unit		
Overall System Eff%	>=	70%		

Utility Design Configuration:	
1. Boilers and Steam Turbines	
2. Cogen and Steam Turbines	Utilities Operation
3. Cogen and Boilers and Steam Turbines	

CHP System Thermal Efficiency- "Boilers Configuration"

Saudi Aramco: Public

CHP System Thermal Efficiency- "Cogen Configuration"

CHP System Thermal Efficiency- "Cogen & Boilers"

CHP System Thermal Efficiency- "Cogen & Boilers"

Facility Energy Demand		Value	Unit	
Power Demand		200	MW	
Steam Demand		1200	Klb/h	
Steam Reserve Available	>=	One Unit		
Overall System Eff%	>=	70%		

Option	Fuel (MMBTU/h)	Power Gen MW	Overall Supply Eff. %
Boilers Only	1722	91	62%
Cogen Only	<mark>4713</mark>	<mark>684</mark>	<mark>76%</mark>
Cogen & Boilers	<mark>2642</mark>	373	<mark>81%</mark>

Conclusion

- CHP Optimization Models:
 - Provides a Clear Picture of Plant's Utilities Operations
 - Provides high potential energy savings in new design
- Optimum design CHP model is crucial for grassroots Oil & Gas industrial facilities.
- Saudi Aramco Mandated the methodology in the design stage for new facilities

Q&A

Thank You

