Address Distillation Process Control during Design Phase to Save Energy and Increase Capacity

Charles D. Herzog P.E.

"How can we improve distillation efficiency before the plant is even built?"

"How can we improve distillation efficiency before the plant is even built?"

Design for Reduced Process Variation

Typical Distillation System

C3 Splitter – Overhead Primary Product

FCC Debutanizer – Bottom Primary Product

Reduce Energy Use and Increase Capacity

- Move target closer to spec
- Reduce reflux and heat per unit feed
- Reduce process variation to stay on-spec

Take These Steps to Reduce Variation

- Select target using data from existing columns
- Identify capital upgrades to reduce variation
- Develop inferential model for 'analyzer down'
- Prioritize *primary* product via basic controls

Select Target based on Predicted Variation

Reduce Variation to Operate Near Product Spec

Address Normal and Maximum Variation

- Estimate standard deviation from data
- Estimate max variation from disturbances
- Evaluate off-spec incidents at existing unit

Consequences of Off-Spec Operation

- Product may have to be diverted or flared
- Off-spec tank may be required
- Off-spec material may need reprocessing
- Customer's operation is adversely affected
- Supplier's reputation is tarnished

On-Spec Operation is a Requirement

- Must be on-spec to achieve efficiency gain
- Prevent off-spec incidents through design

Most Disturbances are Predictable

- Feed rate change
- Feed composition change
- Rainstorm

Design the plant to stay on-spec in these scenarios

Capital Upgrades to Reduce Variation

- Insulate overhead equipment and pipe
- Increase primary product residence time
- Increase size of feed drum
- Add instruments to support inferential model

Insulate Overhead Equipment and Pipe Many Overhead Systems are **NOT** Insulated

Benefits of Insulation

- Reduce losses from light-ends vent
- Reduce solar heating of reflux liquid
- Stay on-spec during rainstorm

What Happens During a Rainstorm?

- Uncontrolled increase in condenser duty
- Pressure decreases rapidly—as much as 20%
- Tray liquid vaporizes, goes to reflux drum
- Heavy ends contaminate distillate product

Pressure Loss Contaminates Distillate

Increase Primary Product Residence Time

- Increase size of reflux drum or column bottom
- Increase level control setting on existing drum
- Dampens all disturbances automatically!!
- Gives operator time to react and stay on-spec

Example for Increased Residence Time

Propane in Distillate after Feed Composition Change

AICHE 11th SOUTHWEST PROCESS TECHNOLOGY CONFERENCE

Increase Size of Feed Drum

- Larger drum leads to steadier feed
- Steadier feed leads to steadier product
- Feed composition changes also dampened

What Happens During Analyzer Calibration?

- Advanced control loops (APC) turn OFF
- Operator makes large increase in reflux
- Column operation is shifted to inferior place
- Inefficiency lasts for hours following calibration

Typical Calibration Time Line

Maintain Efficiency during Calibration Period

- Consider adding redundant analyzer
- Develop inferential composition model
- Maintain operation at normal target

Designing a Practical Inferential Model

- Use press / temp for wide-boiling mixtures
- Use component balance for pure product
- Validate the model using a 'bias' term
- Operator must have confidence in the model

FCC Debutanizer – Bottom Primary Product

Pressure—Temperature Models Use Tower Design Simulation to Generate Model

Validate the Model with Analyzer in Service

• Use model to estimate *RVP* from **P-T** graph

BIAS = ANALYZER RVP – MODEL RVP

- Unchanging bias indicates good model
- Highly variable bias indicates model error

Use Model during Analyzer Calibration

- Application monitors Analyzer Status via DCS
- Predicted RVP = Model RVP + BIAS
- Model can reset temp as pressure varies

Propane Balance Model

- Use feed analyzer to calculate propane in feed
- Subtract propane in bottom product
- Difference is propane in distillate
- Operator uses bottoms-to-feed to stay on spec

Perform Basic Control System Design Early

- Primary product determines the design
- No longer can we defer until after startup
- Operator training based on P&IDs
- Difficult to change controls after HAZOP

Control Strategy Prioritizes Wrong Product

Control Purity via Material Balance

Thank You

