Alan Rossiter

Executive Director, External Relations/Educational Program Development, UH Energy, University of Houston, since March 2019.

Engineering positions with Imperial Chemical Industries (ICI) (England), and SABIC (Saudi Arabia).

Linnhoff March, Inc., USA - industrial energy efficiency and waste minimization consulting. Several roles, including president.

Rossiter & Associates – President & CEO.

Bachelor's, master's, and doctoral degrees in chemical engineering from the University of Cambridge.

Licensed professional engineer (Texas), and Fellow of the American Institute of Chemical Engineers.

UNIVERSITY of **HOUSTON**

UH ENERGY

Harvey and the Beauty of the Steady State

TIEEP Energy Forum

April 2, 2020

Alan Rossiter

UH Energy, University of Houston

UNIVERSITY of **HOUSTON**

UH ENERGY

Harvey and the Beauty of the Steady State

TIEEP Energy Forum

April 2, 2020

Alan Rossiter

UH Energy, University of Houston

Estimated cost: \$125 billion

TABLE 1. Harvey impacts on US petrochemical capacity, August 29, 2017. Credit: ICIS Supply	
	& Demand database, ICIS analysis
Petrochemical	Reduction in capacity due to shutdowns
Ethylene	36.6%
Benzene	31.1%
Polyethylene	25.5%
Polypropylene	24.8%
Propylene	23.3%

<u>Source:</u> Lessons learned from Hurricane Harvey, Laura Cassidy, Inform (AOCS), <u>www.aocs.org/stay-informed/inform-magazine/featured-articles/lessons-learned-from-hurricane-harvey-march-2018</u>
Accessed February 25, 2020

Harvey Also Obliterated Energy Efficiency

One Simple Equation...

...says it all

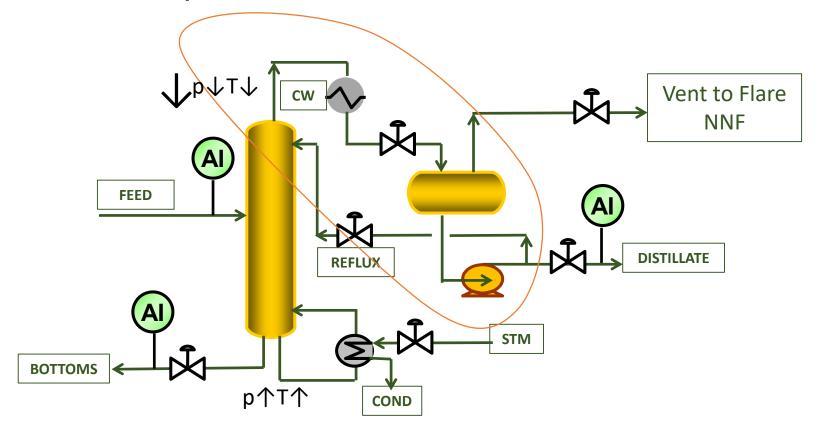
Energy intensity rises (and efficiency falls) if:

- energy consumption increases
- production decreases
- especially during unstable or abnormal operations

- A. Detailed examples
 - 1. Summer rainstorms
 - 2. Throughput cuts
- B. Other situations
- C. Apply observations to Harvey
- D. Mitigation options

A. Detailed examples

- 1. Summer rainstorms
- 2. Throughput cuts
- B. Other situations
- C. Apply observations to Harvey
- D. Mitigation options



Example 1: Summer Rainstorms

Distillation Column Performance

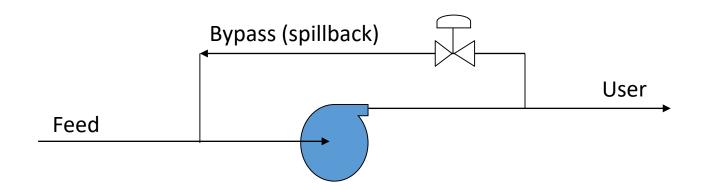
Many Overhead Systems are NOT Insulated

Courtesy: Charles Herzog

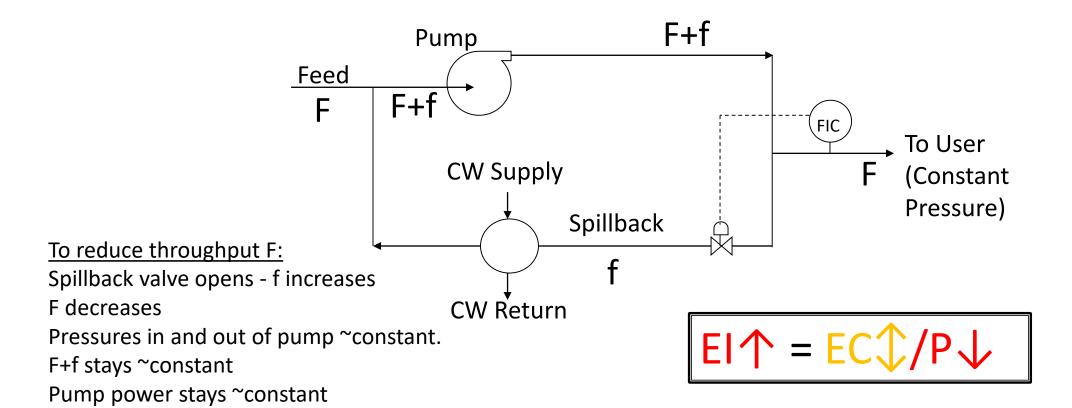
What Happens to the Column During a Rainstorm?

- Uncontrolled increase in condenser duty
- Pressure decreases rapidly
- Tray liquid vaporizes, goes to reflux drum
- Heavy ends contaminate distillate product
- Off-spec material has to be reprocessed

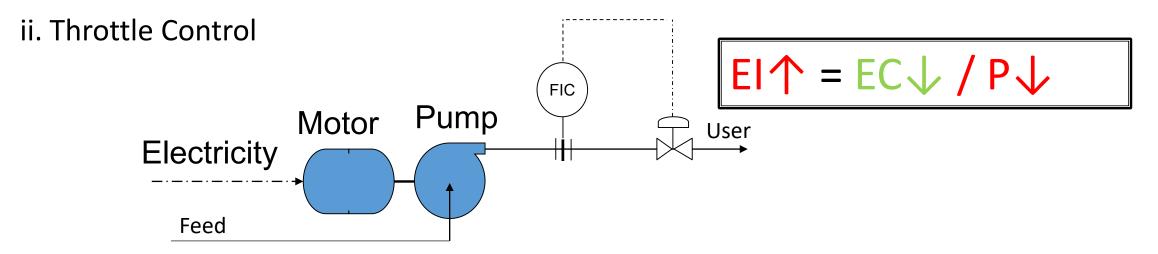
$$EI \uparrow \uparrow \uparrow = EC \uparrow / P \downarrow$$

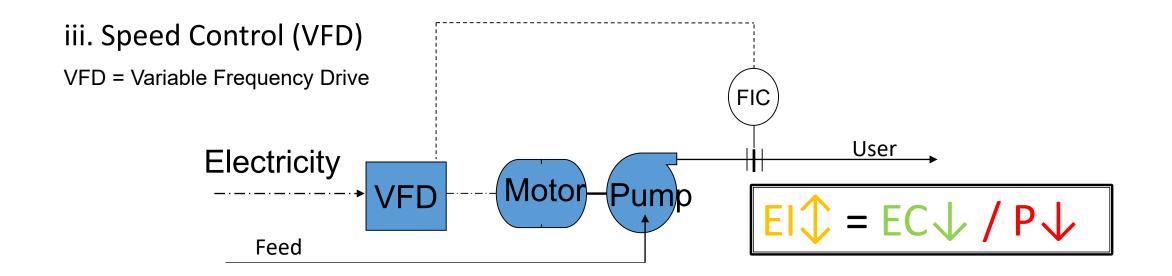

Example 2: Throughput Cuts

Control of Centrifugal Pumps


Pump Control

i. Bypass Control




Bypass Control is Typically the Least Efficient Option

Pump Control

Convert from bypass to throttle control

Saves \$150,000/year

Verify safety/reliability issues

- A. Detailed examples
 - 1. Summer rainstorms
 - 2. Throughput cuts
- B. Other situations
- C. Apply observations to Harvey
- D. Mitigation options

Shutdown and Restart

- No production when plant is fully off-line; low energy use; $EI = \infty$.
- Shutting down and subsequent restarting typically takes several days.
 - Considerable energy is consumed, e.g., controlled cool down and subsequent reheating of furnaces and other equipment.
 - Little usable product is produced.
 - Off-spec product may be stored for subsequent reprocessing.

$$EI \uparrow \uparrow \uparrow = EC \downarrow / P \downarrow \downarrow$$

A few more cases...

- Partial shutdowns (squats) often used for maintenance or to recover from major plant upsets.
- Product or grade changes may include stop/start, changing feedstock, adjusting temperature, pressure, flow rate, etc.

$$EI \uparrow = EC \downarrow / P \downarrow$$

- A. Consider a couple of examples in detail
 - 1. Summer rainstorms
 - 2. Throughput cuts
- B. Other situations
- C. Apply observations to Harvey
- D. Mitigation options

So How Did Harvey Impact Energy Efficiency?

All of the inefficiencies apply:

- Rainstorms
- Equipment stopped/standby
- Shut down plants
- Extended period off-line
- Restarting operations
- Throughput cuts/standby operation because of logistical problems

$$EI \uparrow \uparrow \uparrow = EC \downarrow / P \downarrow \downarrow$$

- A. Consider a couple of examples in detail
 - 1. Summer rainstorms
 - 2. Throughput cuts
- B. Other situations
- C. Apply observations to Harvey
- D. Mitigation options

Minimize or Mitigate El Impacts

<u>Design</u>

- Insulate equipment.
- Provide surge capacity in feed and product drums.
- Upgrade control systems.

Operation

- Minimize the frequency of grade and product changes.
- Modify start-up and shutdown procedures, to eliminate unnecessary delays (subject to safety and equipment integrity)

External

- Increase resiliency of infrastructure & supply chain
- Effective emergency management to minimize downtime

References

- Charles Herzog, Address Distillation Process Control during Design Phase to Save Energy and Increase Capacity, 11th AIChE Southwest Process Technology Conference, Sugar Land, TX, October 1, 2019
- Charles Herzog, *Improve Distillation Control*, Chemical Processing, Vol. 82, No. 2, p. 12, February 2020.
- Alan Rossiter, *The Beauty of the Steady State*, Chemical Processing, In Press, June 2020.
- Laura Cassidy, Lessons learned from Hurricane Harvey, Inform (AOCS), www.aocs.org/stay-informed/inform-magazine/featuredarticles/lessons-learned-from-hurricane-harvey-march-2018

