

6 0 C-3 3 6 0 C-3 C-3 6 0 C-3 6 0 C-3 6 0 C-3 0 C-3 6 0 C-3 6 0 C-3 6 0 C 6 0 C-3 6 0 C-3 6 0 C-3 6 0 C

TIEEP Water Forum

Introduction to Voltea's CapDI Technology and its Applications

6-May-21 Joshua Summers

Contents:

- What is CapDI

🖌 Voltea

- CapDI Advantages
- CapDI Case Studies
 - Automotive Rinse Recovery
 - Cooling Tower Make-up
 - Brewery Make-up Water

What is CapDI Technology?

CapDI (Membrane Capacitive Deionization) is a patented electrical process allowing the removal of ions from water.

- O Anions: chlorides, nitrates, phosphates, sulfates ...
- Generations: hardness, sodium, arsenic, lead, uranium ...

🖌 Voltea

What is CapDI Technology?

Two step process using <1.2 V DC to remove TDS/ions from feed water

Step 1 - Purification:

Feed water passes between oppositely charged electrodes which electrostatically remove dissolved ions, leaving low TDS water flowing out of the cell.

Step 2 – Regeneration/waste:

Feed water flushes through the cell at a lower flow rate, while electrode polarity is reversed. Ions are rejected from the electrode surface, concentrated in the flow channel and flushed from the cell before the cycle is repeated.

System Composition : From Cells to Systems

Our CapDI Systems are composed of modules, which are built from stacks comprising of membrane and electrode cells

Flow rate, feed salinity and targeted purified water quality will determine the number of modules required, while our systems allow easy expansion to meet any increased water demands.

System Composition : From Cells to Systems

Our CapDI Systems are composed of modules, which are built from stacks comprising of membrane and electrode cells

and Electrodes)

CapDI - Clear Differentiation

CapDI is uniquely different from traditional deionization technologies:

Salt-Free Softening	386.3	Tunable Deionization
High Water Recovery		Low Energy Consumption
Minimal Maintenance	3.	Minimum Chemical Use
No Additional Discharge Permitting	•	Built-In Remote Monitoring and Control
Modular Installation		Tolerant to chlorine/disinfectants
Low Fouling Potential	3-8-8	Unaffected By Silica

Applications

One technology, four broad applications, countless solutions

Residential

Commercial & Industrial

Ag Tech

Research and JDA

Voltea's CapDI Systems provide clean, pure water for an array of applications.

Targeted TDS output, high recovery and low maintenance are a few features that **differentiate** our technology from traditional ion removal options

Case Study : Automotive Rinse Water Recovery

- Significant volumes of water used during automotive manufacture: 39,000 gal/car *
 - Large proportion attributed to pretreatment and paint lines
- High quality water used, then disposed of requiring extensive internal and external treatment
- CapDI can be used lineside to recover 70 90 % of this 'waste' minimizing costs and maximizing efficiency
- CapDI Advantages
 - Low energy requirement
 - High recovery
 - Automated operation
 - Minimal pretreatment
 - Minimal maintenance

* https://www.automotiveworld.com/articles/water-water-everywhere-vehicle-manufacturing/

Case Study : Automotive Rinse Water Recovery

Paint Line Rinse Water $T1$ $T1$ $3 \mu m$ Filter $Voltea$ $T2$ $T2$ $Process / RO$							
	Feed TDS F	Pure TDS (ppm)	Water Recovery	Salt Removal	Energy (kWh/Kgal)) 0 0 0 0) 0 0 0 0) 0 0 0 0) 0 0 0 0	
	812	113	85%	86%	3.5		
	Parameter	Un	t <u>r</u> c c c c c c	Feed	Output		
0	рН			5.5	5.8		
1.1	Fluoride	ppr	n	75.9	40.8		
5	Nitrite	ppr	n	381	43.5		
04	Nitrate	ppr	n	355	39.2	10	
2.4	Hardness (as CaCO ₃)	ppr	n	2.6	0.34		
21	Iron	ppr	n	0.5	0.013		
č.	Sodium	ppr	n	84.7	16.4		
0.0	Copper	ppr	n	0.3	0.02		
0.0	Zinc	ppr	n	185	16.7	10	

Case Study : Cooling Tower Make-up

- Cooling towers often utilize municipal water in their operation, often at high cost, both financially to the customer, as well as in usage to the municipality
- CapDI can often be applied to improve the quality of the feed water
 - Maximizes CoC
 - Reduction in make-up water usage as well as blowdown
 - Optimized chemical usage
 - Improved cooling tower lifetime and maintenance costs
 - Reduced strain on feed water, and blowdown waste treatment
- CapDI Advantages
 - Low energy requirement
 - High recovery
 - Automated operation
 - Minimal pretreatment
 - Minimal maintenance

Case Study : Cooling Tower Make-up – Republic Steel

Parameter	Unit	Feed	Output	
TDS	ppm	550	200	
Sulfate	ppm	97.5	32.5	
Phosphate	ppm	0.3	0.1	- i
Hardness (as CaCO ₃)	ppm	132.5	29.2	1
Chloride	ppm	98.5	22.5	

 Use of CapDI enabled the customer to move away from costly municipal water by utilizing water from the Black River, a water source previously deemed unfit for use in the cooling tower

Case Study : Wellington Brewery

Wellington Brewery : Benefits

- Improved beer quality and consistency
- Ability to tailor water
- Local connection and water source
- Significant reduction in maintenance costs
 - Cleaning chemicals and labour
- Reduction in costs from water modification
 - Salts, lactic acid, labour
- High water recovery, low maintenance system

CapDI : Benefits

- Dynamic feedback to maintain target water quality
- Automated cleanings
- Remote monitoring and support
- Data collection and reporting
 - Simple controls and alarms
- Low environmental impact
 - High water recovery
 - Minimal chemical use
 - No salt

Case Study : Wellington Brewery

CapDI enables tunable reduction of mineral content for Wellington Brewery in Guelph

Case Study : Wellington Brewery

Parameter	Unit	Pre CapDI	Post CapDI		
TDS	ppm	588	128		
рН		7.6	7.2		
Total Hardness	ppm	462	108		
Nitrate	ppm	0.6	0.2		
Chloride	ppm	71	16		
Alkalinity	ppm	279	103		
Potassium	ppm	1.9	0.9		
Calcium	ppm	118	28		
Magnesium	ppm	41	9		
Sulfate	ppm	142	26		
Sodium	ppm	34	32		
Boron	ppm	0.03	0.02		
Non-detect ions not shown, St. Lawrence River Institute of Environmental Sciences					

Joshua Summers Sales Manager +1 404 414 4291 joshua.summers@voltea.com

www.voltea.com

402D066_Rev08_Voltea_Overview 05-04-2020

Ò