

DOE's Plant Water Profiler Tool for Water Assessment of Manufacturing Facilities

Kiran Thirumaran Oak Ridge National Laboratory

May 6th, 2021

Striving for Energy Efficient, Resilient, and Competitive Manufacturing Sector

Plant Water Profiler (PWP) Tool

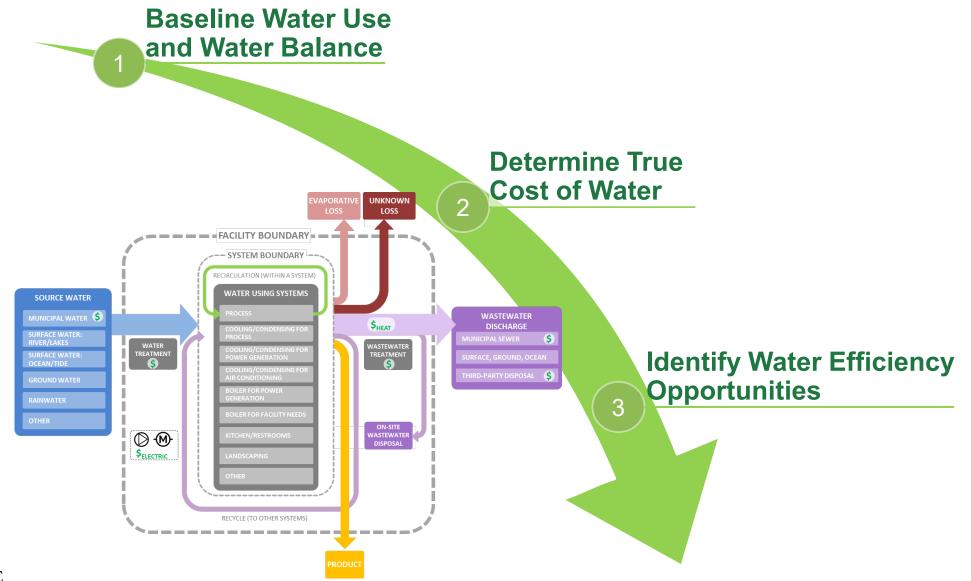
The Plant Water Profiler (PWP) tool is a comprehensive excel-based tool designed for use by manufacturing plants to help perform a facility level water assessment

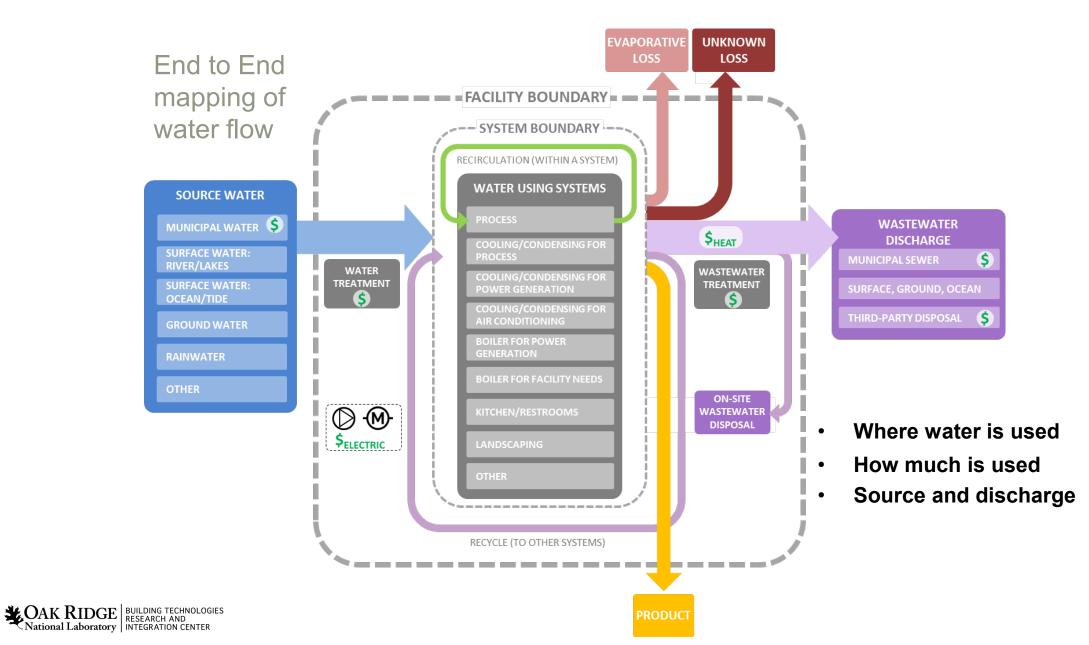
https://www.energy.gov/eere/amo/plant-water-profiler-tool-excel-beta-version-pwpex-v01

Plant Water Profiler Tool

Language:	English	Nata. The Diant Mater Duafiles Taol is suggestive with the in the Frankish law suggestion it				
Water Measurement Unit:	Million Gallons	Note: The Plant Water Profiler Tool is currently available in the English language only. It uses only Million Gallons for water use calculations and USD for cost calculations.				
Currency:	USD	uses only minion danons for water use calculations and osd for cost calculations.				

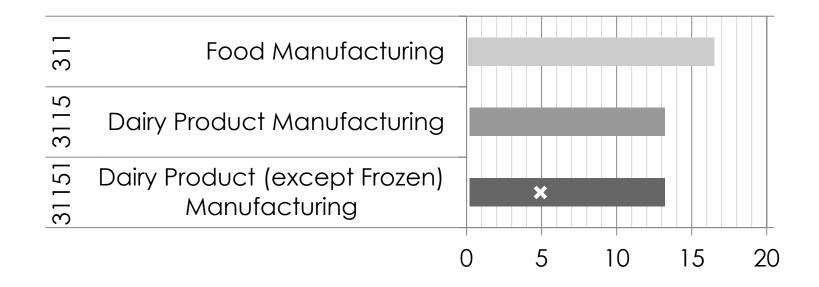
Disclaimer


This tool was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.


National Laboratory

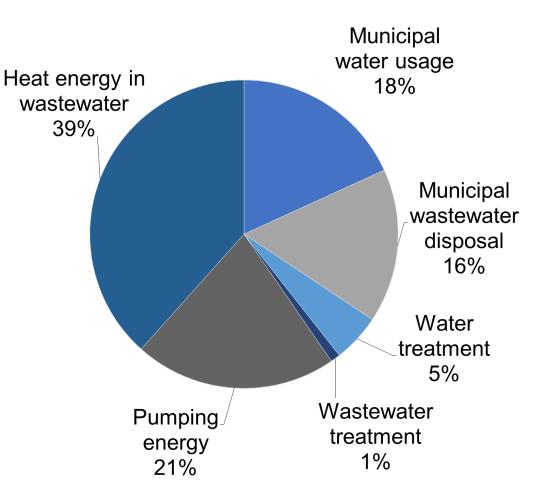
PWP Tool Concept

CAK RIDGE


Baselining water use

Baselining water use

Significance to the facility


- Establishes baseline to track water use over time
- Allows comparison with other industries (motivation)

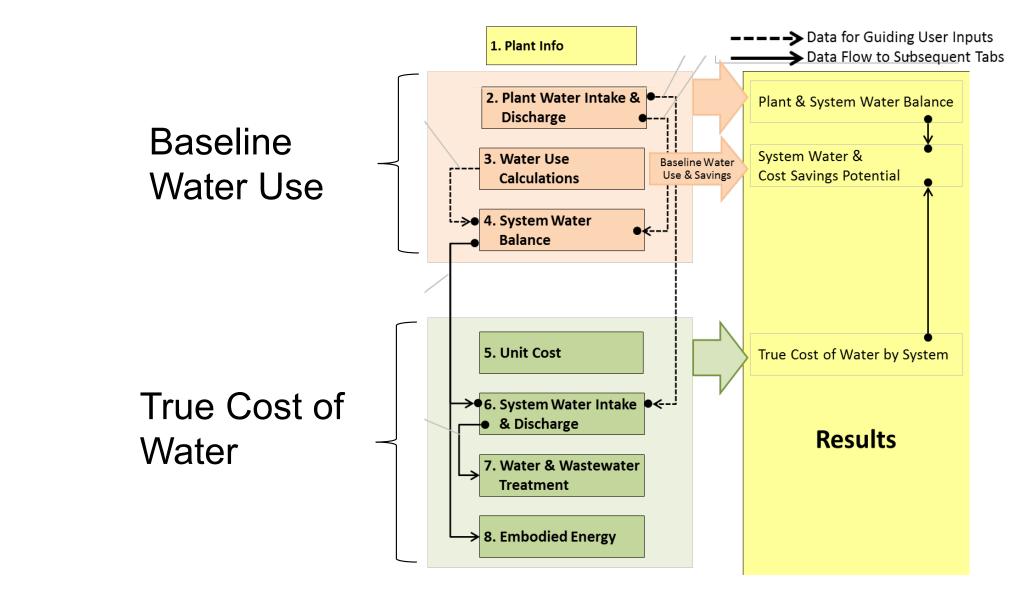
True Cost of Water

- Water costs beyond utility
 - Incoming water treatment
 - Fuel: Heating
 - Electricity: cooling, blowers, pumping
 - Discharge water treatment
- Reducing water use can reduce energy and other costs

True Cost of water is unique for each facility

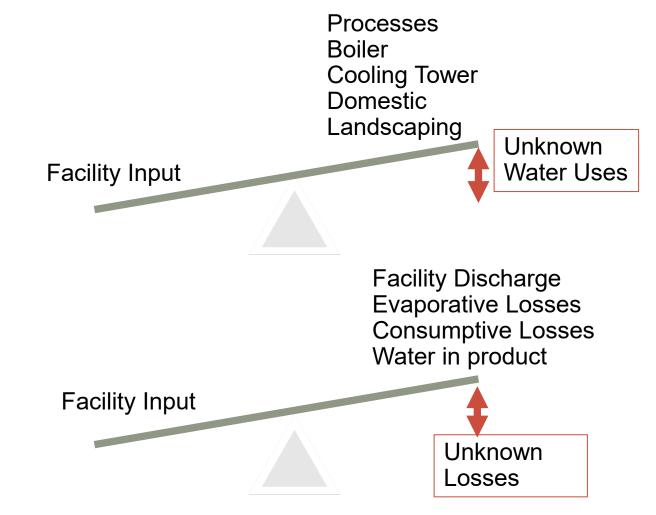
Direct Cost

- Cost of purchased water
- Cost for municipal and industrial sewer

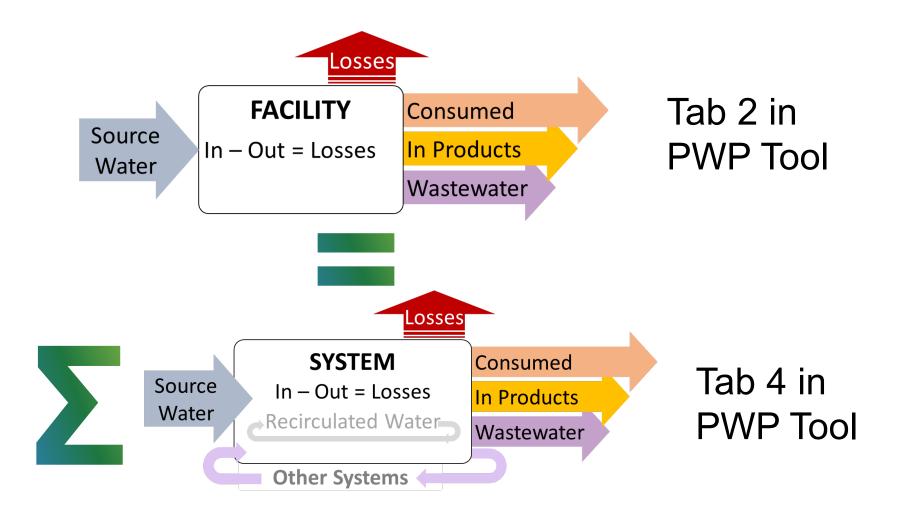

Indirect Cost

- Cost of water and wastewater treatment
- Cost to pump water to point of use
- Cost to heat/cool water
- Cost of chemicals in outflows
- Third Party Disposal...

True Cost of Water


PWP Tool – Map

Step 1. Baselining water use (water balance)


 Total of all water used by individual Systems should equal Plant Water Intake

 Plant Water Intake should equal Plant Water outflows

Step 1 - Baseline Water Use and Water Balance

Tab 3 provides calculators to estimate system water consumption

Tab 2 – Plant Water Intake Table

not listed in the table, such as rainwater, desalinated water, or other. Select the quality of water from the drop-down list. Year 2018 Data Interval Monthly				Groundwate Othe	Municipal Sewer Third-party Disposal To River To Ocean To Ground Onsite Disposal			
Month	Municipal Water	Municipal Water	Pla Municipal Water	River or Lake	Intake (Million Gallo Ocean or Tide	on) Groundwater	Other	Total
	Potable	Nonpotable		Nonpotable				
January	0.95			0.15				1.1
February	0.95			0.15				1.1
March	0.95			0.15				1.1
April	0.95			0.15				1.1
May	0.95			0.15				1.1
June	0.95			0.15				1.1
July	0.95			0.15				1.1
August	0.95			0.15				1.1
September	0.95			0.15				1.1
October	0.95			0.15				1.1
November	0.95			0.15				1.1
December	0.95			0.15				1.1
Annual								-
ANNUAL TOTAL	11.4	-	-	1.8	-	-	_	13.2

CAK RIDGE BUILDING TECHNOLOGIES National Laboratory INTEGRATION CENTER

11

Tab 3 – Example System Level Calculator

Yellow	Please input data ONLY in the yellow cells.
Orange	Please select from the drop-down menu in the orange cells.
Tan	Please DO NOT enter any data or delete values in the tan cells. They contain formulae.
Purple	Please DO NOT enter any data in the purple cells. They show values calculated elsewhere for guiding user input and cross-checking results.
Gray	Please DO NOT enter any data in the gray cells. They are not applicable to your plant.

Part 3.2 - Cooling Tower Water Use

This table calculates cooling tower water use in the plant. Please select the applicable cooling/condensing system and enter required data in the highlighted cells. For "Load (Fraction of Chiller Tonnage)," the typical range is 0.5-0.8. For "Evaporation Rate per 10°F Temp. Drop," 0.85% is a typical value, and the typical range is 0.65% for moist climate to 1.0-1.2% for dry climate. For "Temp. Drop Across Cooling Tower," typical range is 10-15°F. For conductivity, first select "Conductivity Unit" from the dropdown list on the right and then enter data below.

Cooling Tower				Evaporation	Temp. Drop	Makeup	Blowdown	Million Gallon per Year (% of Gross Water Use)				
	Hours of Cooling Operation Tower per Year Tonnage	U U	Load Factor (Fraction of	Rate ner	Across	Water Conductivity	Gross Water Use Makeup Water Blowdown Evapo	going	Recirculated			
		Tonnage)	Drop (%)	Cooling Tower (°F)	μS/cm	μS/cm			Blowdown	Evaporation	M/ator	
Cooling Tower for: Process 1	2,912	250	0.8	0.85%	10	600	1,800	105 (100%)	1.34 (1.28%)	0.446 (0.425%)	0.891 (0.85%)	103 (98.7%)
Cooling Tower for: Air Conditioning	2,000	75	0.78	0.85%	10	600	1,800	21.1 (100%)	0.269 (1.28%)	0.0895 (0.425%)	0.179 (0.85%)	20.8 (98.7%)

μS/cm

12

Tab 4 – System Water Balance

Part 4.1 - System Gross Water Use For EACH water-using system, please provide an estim may use values in the purple cells, which were calculat cells, as shown below: * Use calculated <u>Incoming Water (Source Water + Wa</u> and <u>Water From Other Systems</u> . * Use calculated <u>Recirculated Water</u> for user estimate * Use calculated <u>Gross Water Use</u> to cross-check <u>TOTA</u>	ted in previous tabs, as o ter From Other Systems for <u>Recirculated Water</u> .	a guide for your estir) for user estimate fo	nates in yellow	Source Water Water from Other Systems	WATER-USING S GROSS WATER USE = Source Water + Recycled from Other Recirculated Water	Systems + Products Water Use Wastewate Discharge	on/Irrigation) d in er lep	
		Flows Calculated or Aillion Gallon per Yea		Water Use (Measured or Estimated) (Million Gallon per Year)				
Water-Using System	Incoming Water		Gross Water Use	Incoming Water				
	(Source Water + Recycled From Other Systems)	Recirculated Water		Source Water	Recycled Water From Other Systems	Recirculated Wate	Total (Gross Wate Use)	
Process: Product Cooling	-	-	-	6.8			6.8	
-	-	-	-				-	
-	-	-	-				-	
Cooling Tower for: Process 1	1.337	103.495	104.832	1.3		100.0	101.3	
Cooling Tower for: Air Conditioning	0.269	20.791	21.06	0.3		20.79	21.09	
-	-	-	-				-	
Boiler for: Facility Needs	3.841	1.28	5.121	3.85		1.28	5.13	
- Kitchen and Restrooms	1.399	-	- 1.399	1.4			- 1.4	
Landscaping and Irrigation	1.849	-	1.849		1.85		1.85	
- TOTAL	8.693	125.567	134.26	13.65	1.85	122.07	- 137.57	
Note: System-level TOTAL for Source Water should c	losely match with plant	-level ANNUAL TOTA		13.2				

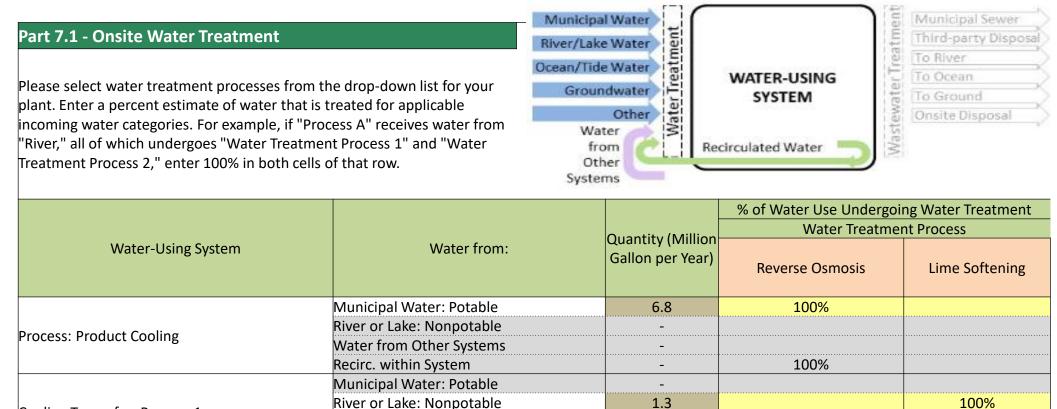
2.1, also shown here in the purple cell.

Data Required

Process	Cooling System	Boiler System	Domestic	Landscaping
Number of Units Processed per Year	Annual Hours of Operation	Annual Hours of Operation	Number of Employees	Area of Land Irrigated
Water Required for Processing	Chiller Tonnage	Boiler Horsepower	Workdays per Year	Inches of Irrigation Water
Fraction of Water Recirculated	Load Factor	Load Factor	Water Use/ Employee	
Water Used in Products (consumed)	Evaporation Rate	Steam Generation Rate		
	Temp. Drop Across Cooling Tower	Feedwater Conductivity		
	Makeup Water Conductivity	Makeup Water Conductivity		
	Blowdown Conductivity	Blowdown Conductivity		

Step 2. Determine True Cost of Water

Tab 5 - Define Unit Cost of all components – TypicalValues are Provided


Tab 6 & 7 - Match unit cost with water flow volumesidentified through water baselining

Tab 8 - Define the embodied energy components –Pumps, Fans and Heating

Tab 7 – Cost of Water and Wastewater Treatment

Water from Other Systems Recirc. within System

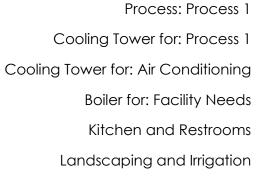
100.0

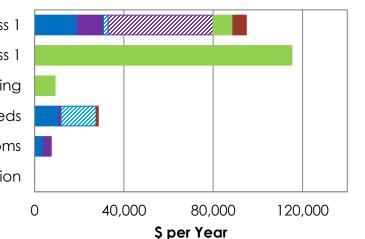
Cooling Tower for: Process 1

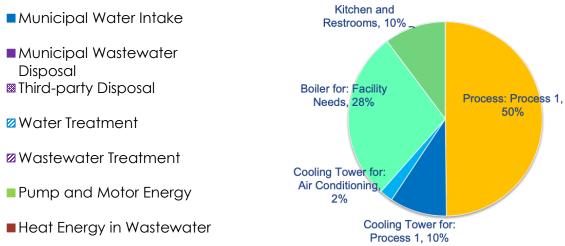
Step 3. Identify water opportunities – Tab 9 & 10

Checklist of plant and system level measures

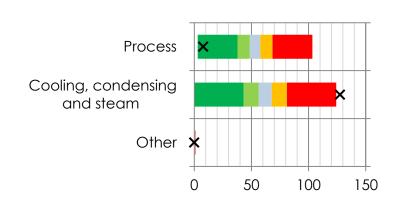
User answers questions to evaluate water efficiency status on system-level and to identify potential opportunities.


System Water Efficiency Status	Response
Process	
Cooling/condensing for process	
Has once-through cooling water been eliminated with the use of chillers, cooling towers, or air-cooled equipment?	No
Has blow-down/bleed-off control on cooling towers been optimized?	No
Is treated wastewater (or other sources of water for cooling tower make-up) reused where possible?	No
Are cycles of concentration for cooling towers maximized through efficient water treatment?	No
Cooling/condensing for air conditioning	
Boiler for Facility	
Kitchen and Restrooms	
Landscaping	




17

PWP results


True Cost of Water

Comparison with Industry Average

CAK RIDGE

Million Gallon

Water Imbalance by System

	Incoming Wate	er Outgoing Water	Water Imbalance			
Water-Using System	Million Ga	llon per Year	Million Gallon Per Year	% of Incoming Water	% of Total Loss	
Process: Process 1	6.8	6.405	0.395	5.8%	87.2%	
Cooling Tower for: Process 1	1.3	1.3	-	-	-	
Cooling Tower for: Air Conditioning	0.3	0.27	0.03	10.0%	6.6%	
	-					
PLANT TOTAL	15.5	15.047	0.453	16.5%	100.0%	

Water Intake by System

Kiran Thirumaran Oak Ridge National Lab thirumarank@ornl.gov

PWP Tool Download Link:

https://www.energy.gov/eere/amo/plant-water-profiler-tool-excel-version-10-pwpex-v10

Acknowledgement

Industry Partners

- Saint-Gobain North America ^{#, ⊗}
- Ford Motors *
- KYB *
- ArcelorMittal [⊗]
- Owens Corning [⊗]
- ALCOA
- Arconic
- General Motors

* Provided beta testing feedback
Provided case study
> Hosted Water INPLT Pilot Training

Sponsor

Advanced Manufacturing Office **US Department of Energy**

Development, Advising and Outreach

Mini Malhotra, Sachin Nimbalkar, Kristina Armstrong, Thomas Wenning, Sujit Das, Daryl Cox, and Wei Guo **Oak Ridge National Laboratory**

Joe Cresko, Eli Levine, Bruce Lung, Andre Defontaine, and Sandy Glatt **US Department of Energy**

William Morrow and Prakash Rao, Lawrence Berkeley National Laboratory

Alberta Carpenter and James McCall National Renewable Energy Laboratory

Diane Graziano, Sarang Supekar, and Nwike Iloeje Argonne National Laboratory