NATIONAL PETROLEUM COUNCIL

Deployment of Low Carbon Intensity (LCI) Hydrogen Energy at Scale

Progress Report

December 12, 2023

NPC H2 Study DRAFT - Do Not Quote or Cite April 16, 2024

Diverse Perspectives Inform Response to Study Request From Secretary of the Department of Energy

Study will address **seven key questions**

>200 participants from 100 organizations participating

Study structure

Chapter 1: Role of LCI Hydrogen in the U.S.

Chapter 2: Supply Pathways for Low-Cl Hydrogen

Chapter 3: Midstream Infrastructure

Chapter 4: Supply Chain Carbon Intensity and Technoeconomics

Chapter 5: Demand Drivers

Chapter 6: Policy and Regulatory

Chapter 7: Safety, Societal Considerations and Impacts

Key Attributes of This Study

Expert Input – Technoeconomic modeling informed by diversity and experience of the study participants

Targeted Role of LCI hydrogen – Identify recommendations to enable LCI hydrogen adoption at a lower cost to society

Regionality – Comprehensive regional analysis across the LCI hydrogen value chain (supply, infrastructure, demand)

NPC H2 Study DRAFT - Do Not Quote or Cite April 16, 2024 3

Modeling Collaboration Between NPC and MIT Energy Initiative

Key Inputs

Analysis

Key Outputs

Economy-wide energy mix, emissions trajectories and costs

Two scenarios: **Stated Policies** and **U.S. Net Zero by 2050**

National and regional **supply** and **demand techno-economics**

Select regional infrastructure optimization

Key Findings

LCI Hydrogen Plays a Key Role in Achieving Emissions Reduction at a Lower Cost to Society

LCI hydrogen accounts for ~8% of emissions reductions in hard-to-abate sectors

Costs to achieve Net Zero increases to ~3% of GDP by 2050

Without LCI hydrogen, costs to achieve Net Zero could increase by an additional 0.5-1% GDP

Source: MIT modeling for NPC Hydrogen study; MMTCO2 - million metric tons CO2 equivalents; GDP - Gross Domestic Product

Unlocking Demand Sectors Will Require Significant and Immediate Action

Source: MIT modeling for NPC Hydrogen study MMTpa – Million metric tons per annum

Optimal Supply Mix Driven by Speed to Scale, Cost and Carbon Intensity

Existing and Future Anchor Demand Will Impact Regional Sectoral Adoption

Regional development also driven by renewable and natural gas resources, infrastructure and supportive State policies

Regional Demand by Sector - U.S. Net Zero by 2050 Scenario

NPC H2 Study DRAFT - Do Not Quote or Cite April 16, 2024

Cost Parity Gap to Incumbents (Threshold Price Example)

Coordinated DOE, Policymaker and Industry Action is Needed to Unlock At-Scale LCI Hydrogen Deployment

- Policy to close cost gaps
- Regulatory and permitting reform to facilitate supply and infrastructure build-out
- Targeted technology and RD&D investments with national labs and public/private programs
- Safety, societal considerations and impacts to improve local stakeholder engagement and provide societal benefits (education, workforce readiness, environment, health)

NATIONAL PETROLEUM COUNCIL

Deployment of Low Carbon Intensity (LCI) Hydrogen Energy at Scale

NPC H2 Study DRAFT - Do Not Quote or Cite April 16, 2024