Houston Hydrogen Transportation Pilot

Christine Ehlig-Economides – PI
US DOE Office of Fossil Energy and Carbon Management (FECM)

UH Hydrogen Symposium April 17, 2024

Sensitivity of Carbon Storage Costs for Hydrogen Generated by Steam Methane Reforming with Carbon Capture (SMRCC) in the United States

Preliminary Example Summary

White Paper Findings

- · Compares hydrogen (H2) generation pathways
- Shows that gaseous H₂ should be competitive with gasoline and diesel for transportation in the Greater Houston Area

Authors:
Paulo Liu
Alexander M. Economides
Christine Ehlig-Economides

Competitive Pricing of Hydrogen as an Economic Alternative to Gasoline and Diesel for the Houston Transportation Sector

Authored by: Paule Lis, Alexander M. Economides and Christine Ehlig-Econom
UH Energy
UNIVERSITY OF MINISTERS

Dashboard Output - Greater Houston Area

- Chose Woodbine Aquifer Woodbine Formation (Clastic, 25 gigatonne CO2 storage capacity)
- Potential Hub Location (PHL) located on top
- National Energy Technology Laboratory (NETL 2017) $\rm CO_2$ Saline Storage Cost Model: Transport: \$6.11/tonne $\rm CO_2$ = \$0.06/kg $\rm H_2$, Storage: \$16.38/tonne $\rm CO_2$ = \$0.16/kg $\rm H_2$

United States (US) Government's Goal: Net-Zero by 2050

30% of total US CO₂ emissions

Dashboard Map

TableauTM map showing Red Hubs: Electrolysis and Blue Hubs: SMR or SMRCC

Brown Areas: Saline aquifers from National Carbon Sequestration Database (NATCARB)

Pipelines (Red: Intrastate, Blue: Interstate, Green: Gathering) from Energy Information Agency (EIA)

LTCH = LCOH + LCT + LCRS

- LTCH Levelized Total Cost of Hydrogen (${\rm H_2}$) Reported in \$ per kg ${\rm H_2}$
- LCOH Levelized Cost of H₂ Generation
- LCT Levelized Cost of H₂ Transportation
- LCRS Levelized Cost of H₂ associated with the costs of refueling stations for consumer sales

Dashboard Output - Kansas City

otal Levelized Cost of Hydrogen for Kansas City, MO-KS

- Chose Ozark Plateau Aquifer Arbuckle Formation (Dolomite, 43.5 gigatonne CO₂ storage capacity)
- Approximately 100 miles to Potential Hub Location (PHL) near Kansas City Missouri
- National Energy Technology Laboratory (NETL 2017) CO₂ Saline Storage Cost Model: Transport: \$5.10/tonne CO₂ = \$0.05/kg H₂, Storage: \$25.68/tonne CO₂ = \$0.26/kg H₂

Information Contacts: Christine Ehlig-Economides ceconomides@uh.edu and Paulo Liu pliu18@uh.edu

Project Inspiration

White Paper Findings

- Compares hydrogen (H₂) generation pathways
- Shows that gaseous H₂ price should be competitive with gasoline and diesel for transportation in the Greater Houston Area

Authors:

Paulo Liu, Alexander M. Economides, Christine Ehlig-Economides

30% of total US CO₂ emissions

Competitive Pricing of Hydrogen as an Economic Alternative to Gasoline and Diesel for the Houston Transportation Sector

Authored by: Paulo Liu, Alexander M. Economides and Christine Ehlig-Economides

DOE Funded Houston Hydrogen Transportation Pilot

Estimates for Greater Houston Area using NREL and ANL Tools

Category	Average Mileage	Unit Price	Price per Mile
ICEV	26 miles per gal	\$2.91/gal	\$0.11/mile
ICEV (Trucks only)	20 miles per gal	\$2.91/gal	\$0.15/mile
FCEV	67 miles per kg	\$6.10/kg H ₂ *	\$0.09/mile
BEV	2.86 miles per kWh	\$0.07/kWh	\$0.02/mile

Category

ICEV

ICEV (Trucks only)

FCEV

BEV

Average Mileage

26 miles per gal

20 miles per gal

67 miles per kg

2.86 miles per kWh

CO₂ Emission

19.6 lbs CO₂/gal

19.6 lbs CO₂/gal

21.9 lbs CO₂/kg H₂

0.81 lbs CO₂/kWh

CO₂ Emission per Mile

0.7 lbs/mile

1.0 lbs/mile

0.3 lbs/mile*

0.3 lbs/mile

^{*}Based on SMR

^{*}Based on SMRCC cost

DOE Funded Houston Hydrogen Transportation Pilot

National Perspective

Tableau™ map showing Red Hubs: Electrolysis and Blue Hubs: SMR or SMRCC
Brown Areas: Saline aquifers from National Carbon Sequestration Database (NATCARB)
Pipelines (Red: Intrastate, Blue: Interstate, Green: Gathering) from Energy Information Agency (EIA)

National Hydrogen Supply Perspective

- Chose Woodbine Aquifer Woodbine Formation (Clastic, 25gigatonne CO2 storage capacity)
- Potential Hub Location (PHL) located on top
- National Energy Technology Laboratory (NETL 2017) CO₂ Saline Storage Cost Model: Transport: \$6.11/tonne CO₂ = \$0.06/kg H₂, Storage: \$16.38/tonne CO₂ = \$0.16/kg H₂

- Chose Ozark Plateau Aquifer Arbuckle Formation (Dolomite, 43.5 gigatonne CO2 storage capacity)
- Approximately 100 miles to Potential Hub Location (PHL) near Kansas City Missouri
- National Energy Technology Laboratory (NETL 2017) $\rm CO_2$ Saline Storage Cost Model: Transport: \$5.10/tonne $\rm CO_2$ = \$0.05/kg $\rm H_2$, Storage: \$25.68/tonne $\rm CO_2$ = \$0.26/kg $\rm H_2$

Levelized Total Cost of Hydrogen Calculation

LTCH = LCOH + LCT + LCRS

- LTCH Levelized Total Cost of Hydrogen (H₂) Reported in \$ per kg H₂
- LCOH Levelized Cost of H₂ Generation
- LCT Levelized Cost of H₂ Transportation
- LCRS Levelized Cost of H₂ associated with the costs of refueling stations for consumer sales

HHTP Team

