

OVERVIEW OF HYDROGEN DELIVERY SCENARIO ANALYSIS MODEL (HDSAM)

Krishna Reddi, Ph.D.

Principal Energy Systems Analyst

Argonne National Laboratory

The Gulf Coast Hydrogen Ecosystem: Opportunities and Solutions

Technology - Hydrogen Supply Chain and Distribution

Infrastructure of gaseous hydrogen delivery and storage

Infrastructure of liquid hydrogen delivery and storage

Hydrogen Delivery Scenario Analysis suite of Models (HDSAM)

Argonne's HDSAM and its derivatives evaluate the economic performance and market acceptance of hydrogen delivery technologies and fueling infrastructure for FCEVs

- ➤ Publicly available with >6,000 users, including major gas and energy companies, in more than 25 countries
- ➤ Supported by U.S. Department of Energy's Hydrogen and Fuel Cell Technologies Office (HFTO) since 2004

HDSAM infrastructure modeling approach

- Suite of tools complete bottom-up engineering designs and cost analyses of hydrogen infrastructure (pipelines, liquefiers, liquid tankers, tube trailers, geologic storage, gaseous fueling stations, and liquid fueling stations) based on user-defined scenarios.
- ➤ Models have been informed and extensively vetted by industry.
- ➤ Models are used by government agencies, academia, and industry to estimate investments necessary for growth of hydrogen infrastructure, and to inform technology-specific targets that guide R&D.
- ➤ All models are publicly available at: https://hdsam.es.anl.gov/

HDSAM simulates transmission, storage and distribution delivery pathways

Demand/supply profiles for storage sizing

HDSAM HEAVY-DUTY MARKET DELIVERY PATHWAYS - SCHEMATIC

HDSAM liquefaction model

- Scaling laws based on aggregation of industry input
 - Liquefier CAPEX
 - Specific energy consumption (SEC)
- Modeling and analysis in the literature suggest SEC can potentially be as low as 6 kWh/kg
- <u>SLC</u> Specific liquefaction cost

Delivered	Liquefier	SLC	SEC	GHG Emissions 2021 (US mix)
	5 tpd	\$4.0 / kg-LH2	11 kWh / kg	4.8 kgCO _{2e} / kgH ₂
30 tpd	33 tpd	\$2.8 / kg-LH2	9.4 kWh / kg	4.1 kgCO _{2e} / kgH ₂
120 tpd	130 tpd	\$2.1 / kg-LH2	8.2 kWh / kg	3.6 kgCO _{2e} / kgH ₂

https://doi.org/10.1016/j.ijhydene.2021.04.078.

Cavern storage cost

https://doi.org/10.1016/j.ijhydene.2021.08.028

https://www.osti.gov/servlets/purl/1029761

HDSAM incorporates pipeline cost by region, by class location, and by material, labor, misc. and ROW

Hydrogen Delivery Pipeline Network Model

> Python-based technoeconomic analysis (TEA) tool that provides minimum cost of hydrogen delivery pipeline network (\$/kg H₂). The model optimizes pipeline route and pipe size and compressor size for minimal total project cost.

Key Inputs to Model:

- H₂ demand and supply with locations and required pressures
- Economic & financial assumptions

Key Outputs:

Optimized H₂ pipeline network route

H₂ levelized price (pipe): [\$/kg H₂]

- Total installed capital investment: [\$]
- Right-of-way cost: [\$]
- Operation and maintenance cost: [\$]

H₂ levelized price (compressor): [\$/kg H₂]

- Total capital investment: [\$]
- Operation and maintenance cost: [\$]
- Yearly electricity consumption: [MW]

Hydrogen Carrier Scenario Analysis Model (HCSAM)

Excel-based technoeconomic analysis (TEA) tool that covers entire supply chain pathways of hydrogen carrier (NH₃) starting with NH₃ production and ending with NH₃ cracking

Key Inputs to Model:

- NH₃ or equivalent H₂ demand
- NH₃ production, transport & cracking pathways definitions.
- Economic & financial assumptions

Key Outputs:

- Levelized cost (\$/kg) NH₃ or equivalent H₂ at destination
- Cost contribution of production, transmission, cracking, storage components
- Total capital cost of investment and operating & maintenance cost
- Annual cash flows

Argonne H2SCOPE CFD model informs FCEV fueling protocol and station design

- ☐ Continuity equations☐ Energy balance equations☐
- ☐ Heat transfer equations
- ☐ Equation of state
- ☐ Flow equations
- ☐ Finite volume method

Argonne developed several H₂ fueling technologies U.S. Patent No. 9,739,418

U.S. Patent No. 10,267,45

U.S. Patent No. 11,105,469

U.S. Patent No. 11,506,342

Acknowledgment

HDSAM suite of models for techno-economic analysis has been supported by DOE's Office of Energy Efficiency and Renewable Energy's Hydrogen and Fuel Cell Technologies Office (HFTO) since 2004

Thank You! kreddi@anl.gov

Our models and publications are available at: https://hdsam.es.anl.gov/