

Geologic Hydrogen

A Critical Part of a Net-Zero Strategy?

Dirk Smit

MIT, Oxford

Growth of Global Demand of Hydrogen: from less than 100 MT/yr to 500 MT/yr in a few decades – mainly driven by its potential to abate 4 -12 Gt CO₂/yr

- Current Customers: Mostly for refineries, fertilizers, methanol. Price: ~1 USD/ Kg H₂
- > By 2050 Current Consumers are < 20% of demand; Most from Steel, Ammonia, Power (fuel cells), Aviation

A Paradigm Shift?

Most of hydrogen in the Universe is **Atomic Hydrogen**: i.e. bound in molecular structures. To produce it **requires** energy and conversion

Molecular Hydrogen is made in the subsurface directly from a reduction of metal rich (mantle) rocks via, for exothermic reactions (serpentinization for example)

Water Electrolysis

Methane reforming

Methane Pyrolysis

Gassification

Hydrogen is found at many places - recognized since the late 1800s. Only recently "larger" accumulations have been reported (Mail, Australia, NE France, Spain, US)

Hydrogen is a Secondary Energy Source

Hydrogen is a primary Energy Source

- > Growth from Low-Carbon Atomic Hydrogen processes is difficult:
 - ➤ High Cost 2 8 USD/Kg H₂
 - Needs lots of Infrastructure: Wind: ~ 190 Tonne H₂/ Yr /Km²; Solar PV: ~ 970 Tonne H₂/ Yr/ Km²

Footer (Source: Ingersoll, Smit 2022)

https://www.science.org/content/article/hidden-hydrogen-earth-may-hold-vast-stores-renewable-carbon-free-fuel

Onshore Locations with Measured Hydrogen concentrations > 10%

Surface observations of high concentrations of hydrogen are ubiquitous

Local flux can be large (~1 Mmcf/day)

Dense area on map related to increased effort to discover seeps

Deep bore holes and underground mines consistently encounter H₂

Estimates of annual flux of H₂ to the atmosphere

109 m ³ H ₂ yr ⁻¹	10 ⁶ t H ₂ yr ⁻¹	Reference
0.3	0.027	Su, 1992
6	0.54	Voitov, 2000
67	6	Gilat, 2005; Gilat, 2012
254	23	Zgonnik, 2020

Geologic Hydrogen Exploration - A Venturable Start-Up Game?

Credit: G. Ellis USGS (2023)

Hydrogen Factories

Source: USGS (2022)

- ■A rich and complex Geologiccal and Geo-chemical/physical play;
 - ■(Continetal, Failed) Rift systems may be attractive to explore for relatively shallow iron rich minerals
 - Large Hydrogen deposits almost never close to Petreoleum systems (HC systems consume all H2)

■ Generation Processes:

- Radiolysis
- Mineralogical (Serpentization)
- Tectonics: subsducting Plates
- **■** Trappings/Losses
 - Seeps (Loss to Atmosphere)
 - Microbes
 - Abiotic Chemistry
- **■** Production/Extraction:
 - Direct from proven Traps
 - Stimulated Fracturing, Flow enhancement
 - Generated (injection of water etc)

Subsurface Hydrogen = A Hydrologic + Mineral System Built on understanding Serpentization processes

Serpentinization is a "slow" hydrolysis and transformation process of primary ferromagnesian minerals e.g. olivine ((Mg,Fe)₂SiO₄) and pyroxenes ((Mg,Fe)SiO₃)

Water reacts with iron-rich mantel rocks (peridotite) to form hydrogen and serpentine

 $3 \text{ Fe}_{2}\text{SiO}_{4} + 2 \text{ H}_{2}\text{O} \rightarrow 2 \text{ Fe}_{3}\text{O}_{4} + 3 \text{ SiO}_{2} + 2 \text{ H}_{2}$ $\Delta H_{f} = -179 \text{ Kj/mol}$

Thermodynamics/Physics:

- ☐ Serpentinization is exothermic: It consumes 300 I/m³ of rock producing 6.6 MJ of heat /m³
 - ☐ The temperature of the rock is raised by 260 Deg C if heat conductivity is low.
- ☐ The Density changes: 3.3 to 2.7 g/cm³
- \Box The surrounding water has pH > 11
- ☐ During the reaction the serpentinite rock can get highly magnetic and is strongly oxidized
- \Box For Mg/Fe \sim 9, 10 -20 mol of olivine produce 1 mole hydrogen
- Geo-physically detectable? Stimulating Production is Key

Production from Serpentinization and Effects of Temperature

Lamadrid 2020 et al

9

Geological H2 Trap settings

A Few Conclusions

see also G. Ellis AAPG talk 2023

- ☐ Hydrogen Generation is rate limited by fluid access (impacted by significant volume increase)
- □ Serpentinization and Hydrogen production likley needs to be stimulated e.g. by fracturing and injection
- ☐ Reaction pathways and Hydrogen generation is dependent on temperature and protolith composition
 - specfically distribution of ferrous and ferric minerrals
 - ☐ Hydrogen generation peaks at about 300 deg C, but subject to catalytizing effects (CO2, pressure, metals distribution)
- Stratographic traps may be very effective to hold significant volumes of hydrogen

Footer Date Month 2016 11

Research Needed in three Areas in a System's Approach

- Hydrogen Production Systems (Hydrology, Mineralogy, (geo)Chemistry, Geology)
- **Production Engineering** build on shale gas production experience
- Sub-susrface Hydrogen Exploration Techniques Heat Flow (Basin) Modelling, Geophysical, Geochemistry, Geology
- Understanding Atmospheric Impact: Hydrogen Flux systems
 (atmospheric chemistry, (geophysical) observation)
- **Build Partnerships:** Academics, Start-Ups, Companies

dirksmit@mit.edu
https://www.linkedin.com/in/dirksmit